simulated_data_budgetIV | R Documentation |
Example dataset from the nonlinear simulation study using 6 candidate instruments, 3 of which are invalid with violation
of IV assumptions (A2) and (A3).
See Appx. C.2 of Penn et al. (2025) for technical details or visit the source code for reproducibility, both referenced below.
The ground truth causal effect is \Phi^* (X) = (X - 0.25)^2 - 0.25^2
.
\beta_{\Phi}
is taken with respect to the basis functions \Phi = (X, X^2)
.
data(simulated_data_budgetIV)
A data frame with 6 rows and 4 columns.
beta_y
Components of the estimator \mathrm{Cov} (Y, Z)
.
beta_phi_1
Components of the estimator \mathrm{Cov} ( \Phi_1 (X), Z )
.
beta_phi_2
Components of the estimator \mathrm{Cov} ( \Phi_2 (X), Z )
.
delta_beta_y
Components of the standard error \mathrm{Se} (\mathrm{Cov} (Y, Z))
.
The code that generated this dataset was written by the authors and can be found in https://github.com/jpenn2023/budgetIVr/blob/main/paper/simulate_nonlinear_data.R. The dataset is saved as "my_dat R = 0.5 SNR_y = 1.csv".
Jordan Penn, Lee Gunderson, Gecia Bravo-Hermsdorff, Ricardo Silva, and David Watson. (2024). BudgetIV: Optimal Partial Identification of Causal Effects with Mostly Invalid Instruments. arXiv preprint, 2411.06913.
data(simulated_data_budgetIV)
beta_y <- simulated_data_budgetIV$beta_y
beta_phi_1 <- simulated_data_budgetIV$beta_phi_1
beta_phi_2 <- simulated_data_budgetIV$beta_phi_2
d_Z <- length(beta_phi_1)
beta_phi <- matrix(c(beta_phi_1, beta_phi_2), nrow = 2, byrow = TRUE)
delta_beta_y <- simulated_data_budgetIV$delta_beta_y
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.