R/bvpa-package.R

#' Bivariate Pareto Distribution
#'
#' @description
#' Implements the EM algorithm with one-step Gradient Descent method to estimate the
#' parameters of the Block-Basu bivariate Pareto distribution with location and scale.
#' We also found parametric bootstrap and asymptotic confidence intervals based on
#' the observed Fisher information of scale and shape parameters, and exact confidence
#' intervals for location parameters.
#'
#' @name bvpa-package
#' @aliases bvpa-package bvpa
#' @docType package
#'
#' @author Biplab Paul <paul.biplab497@gmail.com> and Arabin Kumar Dey <arabin@iitg.ac.in>
#'
#' @references Biplab Paul and Arabin Kumar Dey (2023). An EM algorithm for absolutely
#' continuous Marshall-Olkin bivariate Pareto distribution with location
#' and scale, Preprint.
#' @references E L Lehmann and George Casella (1998). Theory of Point Estimation,
#' Springer, New York, doi.org/10.1007/b98854.
#' @references Bradley Efron and R J Tibshirani (1994). An Introduction to the Bootstrap, CRC press,
#' New York, doi.org/10.1201/9780429246593.
#' @references A P Dempster, N M Laird and D B Rubin (1977). Maximum Likelihood from
#' Incomplete Data via the EM Algorithm, Journal of the royal statistical society:
#' series B (methodological),
#' www.jstor.org/stable/2984875.
#'
#' @keywords package
#'
#' @importFrom numDeriv grad hessian
#' @importFrom stats qnorm quantile runif uniroot

NULL

Try the bvpa package in your browser

Any scripts or data that you put into this service are public.

bvpa documentation built on Aug. 8, 2023, 5:11 p.m.