c212.LSL | R Documentation |
The least-slope estimator estimator (LSL) is one of a number of estimators of the proportion of true null hypotheses. This implementation assumes a grouped structure for the data.
c212.LSL(trial.data)
trial.data |
Data frame containing the p-values for the hypotheses being tested. The data must contain the following columns: B: the index or name of the groupings; p: the p-values of the hypotheses. |
An estimate of the proportion of true null hypotheses.
The implementation is that described in Hu, J. X. and Zhao, H. and Zhou, H. H. (2010).
R. Carragher<raymond.carragher@strath.ac.uk>
Hu, J. X. and Zhao, H. and Zhou, H. H. (2010). False Discovery Rate Control With Groups. J Am Stat Assoc, 105(491):1215-1227.
Benjamini Y, Hochberg Y. (2000). On the Adaptive Control of the False Discovery Rate in Multiple Testing With Independent Statistics. Journal of Educational and Behavioral Statistics, 25(1):60–83.
data(c212.FDR.data)
lsl <- c212.LSL(c212.FDR.data)
print(lsl)
## Not run:
B pi0
1 Bdy-sys_5 1.0000000
2 Bdy-sys_6 1.0000000
3 Bdy-sys_7 1.0000000
4 Bdy-sys_8 1.0000000
5 Bdy-sys_2 1.0000000
6 Bdy-sys_3 0.2857143
7 Bdy-sys_4 1.0000000
8 Bdy-sys_1 1.0000000
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.