cAIC4-package: Conditional Akaike Information Criterion for 'lme4' and...

cAIC4-packageR Documentation

Conditional Akaike Information Criterion for 'lme4' and 'nlme'

Description

Provides functions for the estimation of the conditional Akaike information in generalized mixed-effect models fitted with (g)lmer() from 'lme4', lme() from 'nlme' and gamm() from 'mgcv'. For a manual on how to use 'cAIC4', see Saefken et al. (2021) <doi:10.18637/jss.v099.i08>.

Details

The DESCRIPTION file: This package was not yet installed at build time.
Index: This package was not yet installed at build time.

Author(s)

Benjamin Saefken [aut], David Ruegamer [aut, cre], Philipp Baumann [aut], Rene-Marcel Kruse [aut], Sonja Greven [aut], Thomas Kneib [aut]

Maintainer: David Ruegamer <david.ruegamer@gmail.com>

References

Saefken, B., Kneib T., van Waveren C.-S. and Greven, S. (2014) A unifying approach to the estimation of the conditional Akaike information in generalized linear mixed models. Electronic Journal Statistics Vol. 8, 201-225.

Greven, S. and Kneib T. (2010) On the behaviour of marginal and conditional AIC in linear mixed models. Biometrika 97(4), 773-789.

Efron , B. (2004) The estimation of prediction error. J. Amer. Statist. Ass. 99(467), 619-632.

See Also

lme4

Examples

b <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)

cAIC(b)

cAIC4 documentation built on April 11, 2025, 6:10 p.m.