Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ---- message=FALSE, warning=FALSE--------------------------------------------
library(survey)
library(calidad)
library(dplyr)
ene <- ene %>%
mutate(fdt = if_else(cae_especifico >= 1 & cae_especifico <= 9, 1, 0), # labour force
ocupado = if_else(cae_especifico >= 1 & cae_especifico <= 7, 1, 0), # employed
desocupado = if_else(cae_especifico >= 8 & cae_especifico <= 9, 1, 0),
hombre = if_else(sexo == 1, 1, 0),
mujer = if_else(sexo == 2, 1, 0)) # unemployed
# One row per household
epf <- epf_personas %>%
group_by(folio) %>%
slice(1) %>%
ungroup()
## ---- results='hide'----------------------------------------------------------
# Store original options
old_options <- options()
## -----------------------------------------------------------------------------
# Complex sample design for ENE
dc_ene <- svydesign(ids = ~conglomerado , strata = ~estrato_unico, data = ene, weights = ~fact_cal)
# Complex sample design for EPF
dc_epf <- svydesign(ids = ~varunit, strata = ~varstrat, data = epf, weights = ~fe)
options(survey.lonely.psu = "certainty")
## ---- eval=FALSE--------------------------------------------------------------
# # Complex sample design for ELE
# dc_ele <- svydesign(ids = ~rol_ficticio, weights = ~fe_transversal, strata = ~estrato, fpc = ~pob, data = ELE7)
#
# options(survey.lonely.psu = 'remove')
#
## -----------------------------------------------------------------------------
insumos_prop <- create_prop(var = "desocupado", domains = "sexo", subpop = "fdt", design = dc_ene) # proportion of unemployed people
insumos_total <- create_size(var = "desocupado", domains = "sexo", subpop = "fdt", design = dc_ene) # number of unemployed people
## -----------------------------------------------------------------------------
insumos_total
## -----------------------------------------------------------------------------
desagregar <- create_prop(var = "desocupado", domains = "sexo+region", subpop = "fdt", design = dc_ene)
## ---- eval=F------------------------------------------------------------------
#
# eclac_inputs <- create_prop(var = "desocupado", domains = "sexo+region", subpop = "fdt", design = dc_ene, eclac_input = TRUE)
#
## ---- eval=FALSE, warning=FALSE-----------------------------------------------
#
# create_prop(var = "mujer", denominator = "hombre", domains = "ocupado", design = dc_ene,
# eclac_input = TRUE, scheme = 'eclac_2023')
#
## ---- eval=T, warning=FALSE---------------------------------------------------
insumos_suma <- create_total(var = "gastot_hd", domains = "zona", design = dc_epf)
## -----------------------------------------------------------------------------
insumos_media <- create_mean(var = "gastot_hd", domains = "zona", design = dc_epf)
## -----------------------------------------------------------------------------
# ENE dataset
insumos_prop_nacional <- create_prop("desocupado", subpop = "fdt", design = dc_ene)
insumos_total_nacional <- create_total("desocupado", subpop = "fdt", design = dc_ene)
# EPF dataset
insumos_suma_nacional <- create_total("gastot_hd", design = dc_epf)
insumos_media_nacional <- create_mean("gastot_hd", design = dc_epf)
## -----------------------------------------------------------------------------
# ENE dataset
prop_nacional_ci <- create_prop("desocupado", subpop = "fdt", design = dc_ene, ci = TRUE)
prop_nacional_ci_logit <- create_prop("desocupado", subpop = "fdt", design = dc_ene, ci_logit = TRUE)
## ---- eval=FALSE--------------------------------------------------------------
#
# prod_salarial <- create_prop('VA_2022f', denominator = 'REMP_TOTAL', domains = 'cod_actividad+cod_tamano', design = dc_ele)
## ---- eval=F, warning=FALSE---------------------------------------------------
#
# # INE Chile
# evaluacion_prop <- assess(insumos_prop)
# evaluacion_tot <- assess(insumos_total)
# evaluacion_suma <- assess(insumos_suma)
# evaluacion_media <- assess(insumos_media)
#
# # ECLAC
# evaluacion_cepal_2020 <- assess(eclac_inputs, scheme = 'eclac_2020')
# evaluacion_cepal_2023 <- assess(eclac_inputs, scheme = 'eclac_2023', domain_info = TRUE, low_df_justified = TRUE)
#
#
## ---- eval = FALSE------------------------------------------------------------
# # INE Economics
#
# ## target sample size
# table_n_obj <- ELE7_n_obj %>%
# dplyr::mutate(cod_actividad = cod_actividad_letra,
# cod_tamano = as.character(cod_tamano)) %>%
# dplyr::select(-cod_actividad_letra)
#
#
# eval_ratio <- assess(prod_salarial, scheme = 'chile_economics',
# domain_info = TRUE, table_n_obj = table_n_obj, ratio_between_0_1 = FALSE)
#
## ----eval=F-------------------------------------------------------------------
# # Unemployment by region
# desagregar <- create_size(var = "desocupado", domains = "region", subpop = "fdt", design = dc_ene)
#
# # assess output
# evaluacion_tot_desagreg <- assess(desagregar, publish = T)
# evaluacion_tot_desagreg
## ----eval=F-------------------------------------------------------------------
# # Reset original options
# options(old_options)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.