Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "",
eval = TRUE
)
## ----eval = FALSE-------------------------------------------------------------
# install.packages("calms",dependencies=TRUE)
## ----eval = FALSE-------------------------------------------------------------
# calms::run_calms()
## ----eval = FALSE-------------------------------------------------------------
# ###Load necessary packages
# library(foreign)
# library(haven)
#
# ### Read in data set without labels
# dso <-
# read.spss("ZA6770_v2-1-0.sav",
# use.value.labels=FALSE, max.value.labels=Inf, to.data.frame=TRUE)
# nrow(dso)
# names(dso)
#
# ### Read in data set with labels
# dsoa <-
# read.spss("ZA6770_v2-1-0.sav",
# use.value.labels=TRUE, max.value.labels=Inf, to.data.frame=TRUE)
# nrow(dsoa)
# names(dsoa)
#
# ### Select only needed columns
# #quality of job content (JC: v22-v24) and quality of work environment (WE: v25-v27)
# #demographics:SEX,EMPREL,TYPORG2,DEGREE
# ds<-subset(dso,select=c(country,v22:v27,SEX,DEGREE,EMPREL,TYPORG2))
# names(ds)
#
# ds[,c("country","SEX","DEGREE","EMPREL","TYPORG2")]<-dsoa[,c("country","SEX","DEGREE","EMPREL","TYPORG2")]
#
# ###Get data for the groups (i.e., countries)
# #country numerical codes in SPSS: UK = 826, US = 840
# table(ds$country)
# ds<-subset(ds,(country=="GB-Great Britain and/or United Kingdom" | country=="US-United States"))
# ds$country<-factor(ds$country)
# table(ds$country)
# nrow(ds)
#
# ###getting rid of missing values
# nrow(ds)
# ds<-na.omit(ds)
# nrow(ds)
#
# ###check values
# table(ds$SEX)
# table(ds$DEGREE)
# table(ds$EMPREL)
# table(ds$TYPORG2)
# table(ds$country)
#
# levels(ds$EMPREL)<-c("Employee","Self-employed","Self-employed",NA)
# levels (ds$DEGREE)<-c(rep("no univ",5),rep("univ",2))
#
# ###getting rid of missing values
# nrow(ds)
# ds<-na.omit(ds)
# nrow(ds)
#
# ds$SEX
# levels(ds$SEX)
# levels(ds$SEX)<-c(1,0) #Set "Male" to 1
#
# levels(ds$EMPREL)
# levels(ds$EMPREL)<-c(0,1) #Set "Employee" to 1
#
# levels(ds$TYPORG2)
# levels(ds$TYPORG2)<-c(0,1) #Set "Private employer" to 1
#
# levels(ds$DEGREE)
# levels(ds$DEGREE)<-c(0,1) #Set "univ" to 1
#
# levels(ds$country)
# levels(ds$country)<-c(1,0) #Set "US-United States" to 1
#
# ds$SEX<-as.numeric(ds$SEX)-1
# ds$EMPREL<-as.numeric(ds$EMPREL)-1
# ds$TYPORG2<-as.numeric(ds$TYPORG2)-1
# ds$DEGREE<-as.numeric(ds$DEGREE)-1
# ds$country<-as.numeric(ds$country)-1
#
# nrow(ds)
# names(ds)
#
# write_sav(ds,"WosDemo.sav")
## ----results="markup",echo=FALSE----------------------------------------------
library(calms)
data("WosDemoMeta")
WosDemoMeta
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.