Nothing
#' Yields from Nitrogen nutrition of grass species
#'
#' The data frame `Grass` gives the yield (10 * log10 dry-weight (g)) of
#' eight grass Species in five replicates (Block) grown in sand culture at five
#' levels of nitrogen.
#'
#' Nitrogen (NaNO3) levels were chosen to vary from what was expected to be
#' from critically low to almost toxic. The amount of Nitrogen can be
#' considered on a log3 scale, with levels 0, 2, 3, 4, 5. Gittins (1985, Ch.
#' 11) treats these as equally spaced for the purpose of testing polynomial
#' trends in Nitrogen level.
#'
#' The data are also not truly multivariate, but rather a split-plot
#' experimental design. For the purpose of exposition, he regards Species as
#' the experimental unit, so that correlations among the responses refer to a
#' composite representative of a species rather than to an individual exemplar.
#'
#' @name Grass
#' @docType data
#' @format A data frame with 40 observations on the following 7 variables.
#' \describe{
#' \item{`Species`}{a factor with levels `B.media`
#' `D.glomerata` `F.ovina` `F.rubra` `H.pubesens`
#' `K.cristata` `L.perenne` `P.bertolonii`}
#' \item{`Block`}{a factor with levels `1` `2` `3` `4` `5`}
#' \item{`N1`}{species yield at 1 ppm Nitrogen}
#' \item{`N9`}{species yield at 9 ppm Nitrogen}
#' \item{`N27`}{species yield at 27 ppm Nitrogen}
#' \item{`N81`}{species yield at 81 ppm Nitrogen}
#' \item{`N243`}{species yield at 243 ppm Nitrogen}
#' }
#' @source
#' Gittins, R. (1985), Canonical Analysis: A Review with Applications
#' in Ecology, Berlin: Springer-Verlag, Table A-5.
#' @keywords datasets
#' @concept MANOVA
#' @concept candisc
#' @examples
#'
#' str(Grass)
#' grass.mod <- lm(cbind(N1,N9,N27,N81,N243) ~ Block + Species, data=Grass)
#' car::Anova(grass.mod)
#'
#' grass.canL <-candiscList(grass.mod)
#' names(grass.canL)
#' names(grass.canL$Species)
#'
#'
NULL
#' High School and Beyond Data
#'
#' The High School and Beyond Project was a longitudinal study of students in
#' the U.S. carried out in 1980 by the National Center for Education
#' Statistics. Data were collected from 58,270 high school students (28,240
#' seniors and 30,030 sophomores) and 1,015 secondary schools. The HSB data
#' frame is sample of 600 observations, of unknown characteristics, originally
#' taken from Tatsuoka (1988).
#'
#'
#' @name HSB
#' @docType data
#' @format A data frame with 600 observations on the following 15 variables.
#' There is no missing data.
#' \describe{
#' \item{`id`}{Observation id: a numeric vector}
#' \item{`gender`}{a factor with levels `male` `female`}
#' \item{`race`}{Race or ethnicity: a factor with levels
#' `hispanic` `asian` `african-amer` `white`}
#' \item{`ses`}{Socioeconomic status: a factor with levels `low` `middle` `high`}
#' \item{`sch`}{School type: a factor with levels `public` `private`}
#' \item{`prog`}{High school program: a factor with levels `general` `academic`
#' `vocation`}
#' \item{`locus`}{Locus of control: a numeric vector}
#' \item{`concept`}{Self-concept: a numeric vector}
#' \item{`mot`}{Motivation: a numeric vector}
#' \item{`career`}{Career plan: a factor with levels `clerical`
#' `craftsman` `farmer` `homemaker` `laborer`
#' `manager` `military` `operative` `prof1` `prof2`
#' `proprietor` `protective` `sales` `school`
#' `service` `technical` `not working`}
#' \item{`read`}{Standardized reading score: a numeric vector}
#' \item{`write`}{Standardized writing score: a numeric vector}
#' \item{`math`}{Standardized math score: a numeric vector}
#' \item{`sci`}{Standardized science score: a numeric vector}
#' \item{`ss`}{Standardized social science (civics) score: a numeric vector}
#' }
#' @references High School and Beyond data files:
#' <http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/7896>
#' @source Tatsuoka, M. M. (1988). Multivariate Analysis: Techniques for
#' Educational and Psychological Research (2nd ed.). New York: Macmillan,
#' Appendix F, 430-442.
#'
#' % Originally retrieved from: http://www.gseis.ucla.edu/courses/data/hbs6.dta
#' @keywords datasets
#' @concept MMRA
#' @concept cancor
#' @examples
#'
#' str(HSB)
#' # main effects model
#' hsb.mod <- lm( cbind(read, write, math, sci, ss) ~
#' gender + race + ses + sch + prog, data=HSB)
#' car::Anova(hsb.mod)
#'
#' # Add some interactions
#' hsb.mod1 <- update(hsb.mod, . ~ . + gender:race + ses:prog)
#' heplot(hsb.mod1, col=palette()[c(2,1,3:6)], variables=c("read","math"))
#'
#' hsb.can1 <- candisc(hsb.mod1, term="race")
#' heplot(hsb.can1, col=c("red", "black"))
#'
#' # show canonical results for all terms
#' \dontrun{
#' hsb.can <- candiscList(hsb.mod)
#' hsb.can
#' }
#'
#'
NULL
#' Chemical composition of three cultivars of wine
#'
#' These data are the results of a chemical analysis of wines grown in the same
#' region in Italy but derived from three different cultivars. The analysis
#' determined the quantities of 13 constituents found in each of the three
#' types of wines.
#'
#' This data set is a classic in the machine learning literature as an easy
#' high-D classification problem, but is also of interest for examples of
#' MANOVA and discriminant analysis.
#'
#' The precise definitions of these variables is unknown: units, how they were
#' measured, etc.
#'
#' @name Wine
#' @docType data
#' @format A data frame with 178 observations on the following 14 variables.
#' \describe{
#' \item{`Cultivar`}{a factor with levels `barolo` `grignolino` `barbera`}
#' \item{`Alcohol`}{a numeric vector}
#' \item{`MalicAcid`}{a numeric vector}
#' \item{`Ash`}{a numeric vector}
#' \item{`AlcAsh`}{a numeric vector, Alkalinity of ash}
#' \item{`Mg`}{a numeric vector, Magnesium}
#' \item{`Phenols`}{a numeric vector, Total phenols}
#' \item{`Flav`}{a numeric vector, Flavanoids}
#' \item{`NonFlavPhenols`}{a numeric vector}
#' \item{`Proa`}{a numeric vector, Proanthocyanins}
#' \item{`Color`}{a numeric vector, color intensity}
#' \item{`Hue`}{a numeric vector}
#' \item{`OD`}{a numeric vector, OD280/OD315 of diluted wines}
#' \item{`Proline`}{a numeric vector}
#' }
#' @references In R, a comparable data set is contained in the \pkg{ggbiplot}
#' package.
#' @source This data set was obtained from the UCI Machine Learning Repository,
#' `http://archive.ics.uci.edu/ml/datasets/Wine`. This page references a
#' large number of papers that use this data set to compare different methods.
#' @keywords datasets
#' @concept MANOVA
#' @concept candisc
#' @examples
#'
#' data(Wine)
#' str(Wine)
#' #summary(Wine)
#'
#' Wine.mlm <- lm(as.matrix(Wine[, -1]) ~ Cultivar, data=Wine)
#' Wine.can <- candisc(Wine.mlm)
#' Wine.can
#'
#'
#' plot(Wine.can, ellipse=TRUE)
#' plot(Wine.can, which=1)
#'
#'
#'
NULL
#' Wolf skulls
#'
#' Skull morphometric data on Rocky Mountain and Arctic wolves (Canis Lupus L.)
#' taken from Morrison (1990), originally from Jolicoeur (1959).
#'
#' All variables are expressed in millimeters.
#'
#' The goal was to determine how geographic and sex differences among the wolf
#' populations are determined by these skull measurements. For MANOVA or
#' (canonical) discriminant analysis, the factors `group` or
#' `location` and `sex` provide alternative parameterizations.
#'
#' @name Wolves
#' @docType data
#' @format A data frame with 25 observations on the following 11 variables.
#' \describe{
#' \item{`group`}{a factor with levels `ar:f` `ar:m`
#' `rm:f` `rm:m`, comprising the combinations of `location` and `sex`}
#' \item{`location`}{a factor with levels `ar`=Arctic, `rm`=Rocky Mountain}
#' \item{`sex`}{a factor with levels `f`=female, `m`=male}
#' \item{`x1`}{palatal length, a numeric vector}
#' \item{`x2`}{postpalatal length, a numeric vector}
#' \item{`x3`}{zygomatic width, a numeric vector}
#' \item{`x4`}{palatal width outside first upper molars, a numeric vector}
#' \item{`x5`}{palatal width inside second upper molars, a numeric vector}
#' \item{`x6`}{postglenoid foramina width, a numeric vector}
#' \item{`x7`}{interorbital width, a numeric vector}
#' \item{`x8`}{braincase width, a numeric vector}
#' \item{`x9`}{crown length, a numeric vector}
#' }
#' @references Jolicoeur, P. ``Multivariate geographical variation in the wolf
#' *Canis lupis L.*'', *Evolution*, XIII, 283--299.
#' @source Morrison, D. F. *Multivariate Statistical Methods*, (3rd ed.),
#' 1990. New York: McGraw-Hill, p. 288-289.
#'
#' % ~~ reference to a publication or URL from which the data were obtained ~~
#' @keywords datasets
#' @concept candisc
#' @examples
#'
#' data(Wolves)
#'
#' # using group
#' wolf.mod <-lm(cbind(x1,x2,x3,x4,x5,x6,x7,x8,x9) ~ group, data=Wolves)
#' car::Anova(wolf.mod)
#'
#' wolf.can <-candisc(wolf.mod)
#' plot(wolf.can)
#' heplot(wolf.can)
#'
#' # using location, sex
#' wolf.mod2 <-lm(cbind(x1,x2,x3,x4,x5,x6,x7,x8,x9) ~ location*sex, data=Wolves)
#' car::Anova(wolf.mod2)
#'
#' wolf.can2 <-candiscList(wolf.mod2)
#' plot(wolf.can2)
#'
#'
NULL
#' @name PsyAcad
#' @aliases PsyAcad
#' @docType data
#' @title
#' Psychological Measures and Academic Achievement
#'
#' @description
#' A researcher collected data on three psychological variables, four academic variables
#' (standardized test scores) and gender for 600 college freshman.
#' She is interested in how the set of psychological variables relates to the academic variables and gender.
#' In particular, the researcher is interested in how many dimensions (canonical variables) are necessary to
#' understand the association between the two sets of variables.
#'
#' @usage data("PsyAcad")
#' @format
#' A data frame with 600 observations on the following 8 variables.
#' \describe{
#' \item{`LocControl`}{locus of control, a numeric vector}
#' \item{`SelfConcept`}{self concept, a numeric vector}
#' \item{`Motivation`}{motivation, a numeric vector}
#' \item{`Read`}{reading score, a numeric vector}
#' \item{`Write`}{writing score, a numeric vector}
#' \item{`Math`}{mathematics score, a numeric vector}
#' \item{`Science`}{science score, a numeric vector}
#' \item{`Sex`}{a factor with levels `M`, `F`}
#' }
#'
#' @source
#' Taken from <https://stats.oarc.ucla.edu/r/dae/canonical-correlation-analysis/>
#'
#' @concept cancor
#' @examples
#' data(PsyAcad)
#' PsyAcad$Sex <- as.numeric(PsyAcad$Sex)
#' PsyAcad.can <- cancor(cbind(LocControl, SelfConcept, Motivation) ~
#' Read + Write + Math + Science + Sex, data = PsyAcad)
#'
#' PsyAcad.can
#'
#' # redundancy analysis
#' redundancy(PsyAcad.can)
#'
#' # Plots
#' canR <- PsyAcad.can$cancor
#' plot(PsyAcad.can, pch=16, id.n = 3)
#' text(-2, 3, paste("Can R =", round(canR[1], 3)), pos = 3)
#'
#' plot(PsyAcad.can, which = 2, pch=16, id.n = 3)
#' text(-2, 3.5, paste("Can R =", round(canR[2], 3)), pos = 3)
#'
#' @keywords datasets
NULL
#' @name cereal
#' @aliases cereal
#' @docType data
#' @title
#' Breakfast Cereal Dataset
#'
#' @description
#' A multivariate dataset describing seventy-seven commonly available breakfast cereals, based on the information
#' now available on the FDA food label. The variable `rating` is a likely response variable in
#' statistical models.
#'
#'
#' @usage data("cereal")
#' @format
#' A data frame with 77 observations on the following 16 variables.
#' \describe{
#' \item{`name`}{cereal name, a character vector}
#' \item{`mfr`}{manufacturer (A G K N P Q R), a character vector}
#' \item{`type`}{type (cold/hot), a character vector}
#' \item{`calories`}{calories (number), a numeric vector}
#' \item{`protein`}{protein(g), a numeric vector}
#' \item{`fat`}{fat(g), a numeric vector}
#' \item{`sodium`}{sodium(mg), a numeric vector}
#' \item{`fiber`}{dietary fiber(g), a numeric vector}
#' \item{`carbo`}{complex carbohydrates(g), a numeric vector}
#' \item{`sugars`}{sugars(g), a numeric vector}
#' \item{`potass`}{potassium(mg), a numeric vector}
#' \item{`vitamins`}{vitamins & minerals (0, 25, or 100, respectively indicating "none added";
#' "enriched"; "FDA recommended"), a numeric vector}
#' \item{`shelf`}{display shelf (1, 2, or 3, counting from the floor), a numeric vector}
#' \item{`weight`}{weight (in ounces) of one serving (serving size), a numeric vector}
#' \item{`cups`}{cups per serving, a numeric vector}
#' \item{`rating`}{health rating of the cereal (unknown calculation method), a numeric vector}
#' }
#'
#' @details
#' This dataset was used in the poster competition for the American Statistical association 1993 Statistical Graphics Exposition,
#' titled *Serial Correlation or Cereal Correlation ??*.
#'
#' The call for participation reads:
#' "A multivariate dataset describing seventy-seven commonly available breakfast cereals, based on the information now available on
#' the newly-mandated F&DA food label. What are you getting when you eat a bowl of cereal? Can you get a lot of fiber without
#' a lot of calories? Can you describe what cereals are displayed on high, low, and middle shelves? The good news is that none
#' of the cereals for which we collected data had any cholesterol, and manufacturers rarely use artificial sweeteners and colors,
#' nowadays. However, there is still a lot of data for the consumer to understand while choosing a good breakfast cereal."
#'
#' Further details on the variables and suggested analyses are available at
#' <https://community.amstat.org/jointscsg-section/dataexpo/dataexpo1993>
#'
#' The abbreviations for manufacturer, `mfr`, stand for:
#' \describe{
#' \item{`A`}{American Home Food Products}
#' \item{`G`}{General Mills}
#' \item{`K`}{Kellog}
#' \item{`N`}{Nabisco}
#' \item{`P`}{Post}
#' \item{`Q`}{Quaker Oats}
#' \item{`R`}{Ralston Purina}
#' }
#'
#'
#' @source From the American Statistical Association 1993 Statistical Graphics Exposition, 'Serial Correlation or Cereal Correlation ??',
#' <https://community.amstat.org/jointscsg-section/dataexpo/dataexpo1993>.
#' @seealso
#' [MASS::UScereal] has a similar dataset with fewer observations and variables, but with the variables normalized to a portion of one US cup.
#'
#' <https://www.kaggle.com/datasets/crawford/80-cereals> Essentially the same dataset
#'
#' @references
#' Jean Dos Santos, Breakfast Cereals: Data Analysis and Clustering, (Kaggle link doesn't work)
#' Does a bunch of data cleaning
#' and exploratory data analysis in R.
#'
#' @concept MMRA
#' @concept cancor
#' @examples
#' library(dplyr)
#' data(cereal)
#' str(cereal)
#'
#' # Add explicit name of manufacturer
#' # names for manufacturers
#' mfr_names <- c(
#' "A" = "American Home Foods",
#' "G" = "General Mills",
#' "K" = "Kellog",
#' "N" = "Nabisco",
#' "P" = "Post",
#' "Q" = "Quaker Oats",
#' "R" = "Ralston Purina"
#' )
#'
#' # recode `mfr` as `mfr_name`
#' cereal <- cereal |>
#' mutate(mfr_name = recode(mfr, !!!mfr_names))
#'
#' # density plot of ratings
#' library(ggplot2)
#' ggplot(data = cereal,
#' aes(x = rating, fill = mfr_name, color = mfr_name)) +
#' geom_density(alpha = 0.1) +
#' theme_classic(base_size = 14) +
#' theme(legend.position = "bottom")
#'
#' @keywords datasets
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.