Nothing
#' @title datacapushe
#'
#' @description
#'
#' A dataframe example for the \code{\link[=capushe-package]{capushe package}} based on a simulated Gaussian
#' mixture dataset in \eqn{\R^3}.
#'
#' @usage data(datacapushe)
#'
#' @format A data frame with 50 rows (models) and the following 4 variables:
#' \describe{
#' \item{\code{model}}{a character vector: model names.}
#' \item{\code{pen}}{a numeric vector: model penalty shape values.}
#' \item{\code{complexity}}{a numeric vector: model complexity values.}
#' \item{\code{contrast}}{a numeric vector: model contrast values.}
#' }
#'
#' @details
#' The simulated dataset is composed of \eqn{n=1000} observations in \eqn{\R^3}. It
#' consists of an equiprobable mixture of three large "bubble" groups centered at
#' \eqn{\nu_1=(0,0,0)}, \eqn{\nu_2=(6,0,0)} and \eqn{\nu_3=(0,6,0)} respectively. Each
#' bubble group \eqn{j} is simulated from a mixture of seven components according
#' to the following density distribution:
#'
#' \eqn{x\in\R^3\rightarrow 0.4\Phi(x|\mu_1+\nu_j,I_3)+\sum_{k=2}^70.1\Phi(x|\mu_k+\nu_j,0.1I_3)}
#'
#' with \eqn{\mu_1=(0,0,0)}, \eqn{\mu_2=(0,0,1.5)}, \eqn{\mu_3=(0,1.5,0)}, \eqn{\mu_4=(1.5,0,0,)},
#' \eqn{\mu_5=(0,0,-1.5)}, \eqn{\mu_6=(0,-1.5,0)} and \eqn{\mu_7=(-1.5,0,0,)}. Thus the
#' distribution of the dataset is actually a \eqn{21}-component Gaussian mixture.
#'
#' A model collection of spherical Gaussian mixtures is considered and the dataframe
#' \code{datacapushe} contains the maximum likelihood estimations for each of these models.
#' The number of free parameters of each model is used for the complexity values and \eqn{pen_{shape}}
#' is defined by this complexity divided by \eqn{n}.
#'
#' \code{datapartialcapushe} and \code{datavalidcapushe} can be used to run the
#' \code{\link[=validation]{validation}} function. \code{datapartialcapushe} only
#' contains the models with less than \eqn{21} components. \code{datavalidcapushe}
#' contains three models with \eqn{30}, \eqn{40} and \eqn{50} components respectively.
#'
#'
#' @references Article: Baudry, J.-P., Maugis, C. and Michel, B. (2011) Slope heuristics:
#' overview and implementation. \var{Statistics and Computing}, to appear. doi: 10.1007/s11222-011-9236-1
#'
#' @examples
#' data(datacapushe)
#' capushe(datacapushe,n=1000)
#' ## BIC, DDSE and Djump all three select the true model
#' plot(capushe(datacapushe),newwindow=FALSE)
#' ## Validation:
#' data(datapartialcapushe)
#' capushepartial=capushe(datapartialcapushe)
#' data(datavalidcapushe)
#' validation(capushepartial,datavalidcapushe,newwindow=FALSE) ## The slope heuristics should not
#' ## be applied for datapartialcapushe.
#'
#' @keywords datasets
#' @aliases datacapushe
"datacapushe"
#' @title datapartialcapushe
#'
#' @description
#'
#' A dataframe example for the \code{\link[=capushe-package]{capushe package}} based on a simulated Gaussian
#' mixture dataset in \eqn{\R^3}.
#'
#' @usage data(datapartialcapushe)
#'
#' @format A data frame with 21 rows (models) and the following 4 variables:
#' \describe{
#' \item{\code{model}}{a character vector: model names.}
#' \item{\code{pen}}{a numeric vector: model penalty shape values.}
#' \item{\code{complexity}}{a numeric vector: model complexity values.}
#' \item{\code{contrast}}{a numeric vector: model contrast values.}
#' }
#'
#' @details
#' The simulated dataset is composed of \eqn{n=1000} observations in \eqn{\R^3}. It
#' consists of an equiprobable mixture of three large "bubble" groups centered at
#' \eqn{\nu_1=(0,0,0)}, \eqn{\nu_2=(6,0,0)} and \eqn{\nu_3=(0,6,0)} respectively. Each
#' bubble group \eqn{j} is simulated from a mixture of seven components according
#' to the following density distribution:
#'
#' \eqn{x\in\R^3\rightarrow 0.4\Phi(x|\mu_1+\nu_j,I_3)+\sum_{k=2}^70.1\Phi(x|\mu_k+\nu_j,0.1I_3)}
#'
#' with \eqn{\mu_1=(0,0,0)}, \eqn{\mu_2=(0,0,1.5)}, \eqn{\mu_3=(0,1.5,0)}, \eqn{\mu_4=(1.5,0,0,)},
#' \eqn{\mu_5=(0,0,-1.5)}, \eqn{\mu_6=(0,-1.5,0)} and \eqn{\mu_7=(-1.5,0,0,)}. Thus the
#' distribution of the dataset is actually a \eqn{21}-component Gaussian mixture.
#'
#' A model collection of spherical Gaussian mixtures is considered and the dataframe
#' \code{datacapushe} contains the maximum likelihood estimations for each of these models.
#' The number of free parameters of each model is used for the complexity values and \eqn{pen_{shape}}
#' is defined by this complexity divided by \eqn{n}.
#'
#' \code{datapartialcapushe} and \code{datavalidcapushe} can be used to run the
#' \code{\link[=validation]{validation}} function. \code{datapartialcapushe} only
#' contains the models with less than \eqn{21} components. \code{datavalidcapushe}
#' contains three models with \eqn{30}, \eqn{40} and \eqn{50} components respectively.
#'
#'
#' @references Article: Baudry, J.-P., Maugis, C. and Michel, B. (2011) Slope heuristics:
#' overview and implementation. \var{Statistics and Computing}, to appear. doi: 10.1007/s11222-011-9236-1
#'
#' @examples
#' data(datacapushe)
#' capushe(datacapushe,n=1000)
#' ## BIC, DDSE and Djump all three select the true model
#' plot(capushe(datacapushe),newwindow=FALSE)
#' ## Validation:
#' data(datapartialcapushe)
#' capushepartial=capushe(datapartialcapushe)
#' data(datavalidcapushe)
#' validation(capushepartial,datavalidcapushe,newwindow=FALSE) ## The slope heuristics should not
#' ## be applied for datapartialcapushe.
#'
#' @keywords datasets
#' @aliases datapartialcapushe
"datapartialcapushe"
#' @title datavalidcapushe
#'
#' @description
#'
#' A dataframe example for the \code{\link[=capushe-package]{capushe package}} based on a simulated Gaussian
#' mixture dataset in \eqn{\R^3}.
#'
#' @usage data(datavalidcapushe)
#'
#' @format A data frame with 3 rows (models) and the following 4 variables:
#' \describe{
#' \item{\code{model}}{a character vector: model names.}
#' \item{\code{pen}}{a numeric vector: model penalty shape values.}
#' \item{\code{complexity}}{a numeric vector: model complexity values.}
#' \item{\code{contrast}}{a numeric vector: model contrast values.}
#' }
#'
#' @details
#' The simulated dataset is composed of \eqn{n=1000} observations in \eqn{\R^3}. It
#' consists of an equiprobable mixture of three large "bubble" groups centered at
#' \eqn{\nu_1=(0,0,0)}, \eqn{\nu_2=(6,0,0)} and \eqn{\nu_3=(0,6,0)} respectively. Each
#' bubble group \eqn{j} is simulated from a mixture of seven components according
#' to the following density distribution:
#'
#' \eqn{x\in\R^3\rightarrow 0.4\Phi(x|\mu_1+\nu_j,I_3)+\sum_{k=2}^70.1\Phi(x|\mu_k+\nu_j,0.1I_3)}
#'
#' with \eqn{\mu_1=(0,0,0)}, \eqn{\mu_2=(0,0,1.5)}, \eqn{\mu_3=(0,1.5,0)}, \eqn{\mu_4=(1.5,0,0,)},
#' \eqn{\mu_5=(0,0,-1.5)}, \eqn{\mu_6=(0,-1.5,0)} and \eqn{\mu_7=(-1.5,0,0,)}. Thus the
#' distribution of the dataset is actually a \eqn{21}-component Gaussian mixture.
#'
#' A model collection of spherical Gaussian mixtures is considered and the dataframe
#' \code{datacapushe} contains the maximum likelihood estimations for each of these models.
#' The number of free parameters of each model is used for the complexity values and \eqn{pen_{shape}}
#' is defined by this complexity divided by \eqn{n}.
#'
#' \code{datapartialcapushe} and \code{datavalidcapushe} can be used to run the
#' \code{\link[=validation]{validation}} function. \code{datapartialcapushe} only
#' contains the models with less than \eqn{21} components. \code{datavalidcapushe}
#' contains three models with \eqn{30}, \eqn{40} and \eqn{50} components respectively.
#'
#'
#' @references Article: Baudry, J.-P., Maugis, C. and Michel, B. (2011) Slope heuristics:
#' overview and implementation. \var{Statistics and Computing}, to appear. doi: 10.1007/s11222-011-9236-1
#'
#' @examples
#' data(datacapushe)
#' capushe(datacapushe,n=1000)
#' ## BIC, DDSE and Djump all three select the true model
#' plot(capushe(datacapushe),newwindow=FALSE)
#' ## Validation:
#' data(datapartialcapushe)
#' capushepartial=capushe(datapartialcapushe)
#' data(datavalidcapushe)
#' validation(capushepartial,datavalidcapushe,newwindow=FALSE) ## The slope heuristics should not
#' ## be applied for datapartialcapushe.
#'
#' @keywords datasets
#' @aliases datavalidcapushe
"datavalidcapushe"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.