augment.feglm | R Documentation |
The provided broom
methods do the following:
augment
: Takes the input data and adds additional columns with the
fitted values and residuals.
glance
: Extracts the deviance, null deviance, and the number of
observations.'
tidy
: Extracts the estimated coefficients and their standard errors.
## S3 method for class 'feglm'
augment(x, newdata = NULL, ...)
## S3 method for class 'felm'
augment(x, newdata = NULL, ...)
## S3 method for class 'feglm'
glance(x, ...)
## S3 method for class 'felm'
glance(x, ...)
## S3 method for class 'feglm'
tidy(x, conf_int = FALSE, conf_level = 0.95, ...)
## S3 method for class 'felm'
tidy(x, conf_int = FALSE, conf_level = 0.95, ...)
x |
A fitted model object. |
newdata |
Optional argument to use data different from the data used to fit the model. |
... |
Additional arguments passed to the method. |
conf_int |
Logical indicating whether to include the confidence interval. |
conf_level |
The confidence level for the confidence interval. |
A tibble with the respective information for the augment
, glance
,
and tidy
methods.
set.seed(123)
trade_2006 <- trade_panel[trade_panel$year == 2006, ]
trade_2006 <- trade_2006[sample(nrow(trade_2006), 500), ]
mod <- fepoisson(
trade ~ log_dist + lang + cntg + clny | exp_year + imp_year,
trade_2006
)
broom::augment(mod)
broom::glance(mod)
broom::tidy(mod)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.