Nothing
#' IntCal20 calibration curve
#'
#' The IntCal20 Northern Hemisphere radiocarbon age calibration curve
#' on a calendar grid spanning from 55,000--0 cal yr BP
#' (Before Present, 0 cal yr BP corresponds to 1950 CE). \cr \cr
#' \emph{Note:} This dataset provides \eqn{{}^{14}}C ages and F\eqn{{}^{14}}C values
#' on a calendar age grid. This is different from the \eqn{{}^{14}}C ages
#' and \eqn{{\Delta}^{14}}C values provided in oxcal .14c files.\cr \cr
#' \strong{Reference:} \cr Reimer PJ, Austin WEN, Bard E, Bayliss A, Blackwell PG, Bronk Ramsey C,
#' Butzin M, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP,
#' Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kromer B, Manning SW, Muscheler R,
#' Palmer JG, Pearson C, van der Plicht J, Reimer RW, Richards DA, Scott EM,
#' Southon JR, Turney CSM, Wacker L, Adolphi F, Büntgen U, Capano M, Fahrni S,
#' Fogtmann-Schulz A, Friedrich R, Köhler P, Kudsk S, Miyake F, Olsen J,
#' Reinig F, Sakamoto M, Sookdeo A, Talamo S. 2020.
#' The IntCal20 Northern Hemisphere radiocarbon age calibration curve
#' (0-55 cal kBP). \emph{Radiocarbon} \strong{62} https://doi.org/10.1017/RDC.2020.41.
#'
#' @format ## `intcal20`
#' A data frame with 9,501 rows and 5 columns providing the IntCal20 radiocarbon age
#' calibration curve on a calendar grid spanning from 55,000--0 cal yr BP:
#' \describe{
#' \item{calendar_age}{The calendar age (in cal yr BP)}
#' \item{c14_age}{The \eqn{{}^{14}}C age (in \eqn{{}^{14}}C yr BP)}
#' \item{c14_sig}{The (1-\eqn{\sigma}) uncertainty in the \eqn{{}^{14}}C age}
#' \item{f14c}{The \eqn{{}^{14}}C age expressed as F\eqn{{}^{14}}C concentration}
#' \item{f14c_sig}{The (1-\eqn{\sigma}) uncertainty in the F\eqn{{}^{14}}C concentration}
#' }
#' @source http://doi.org/10.1017/RDC.2020.41
"intcal20"
#' IntCal13 calibration curve
#'
#' The IntCal13 Northern Hemisphere radiocarbon age calibration curve
#' on a calendar grid spanning from 50,000--0 cal yr BP
#' (Before Present, 0 cal yr BP corresponds to 1950 CE). \cr \cr
#' \emph{Note:} This dataset provides \eqn{{}^{14}}C ages and F\eqn{{}^{14}}C values
#' on a calendar age grid. This is different from the \eqn{{}^{14}}C ages
#' and \eqn{{\Delta}^{14}}C values provided in oxcal .14c files.\cr \cr
#' \strong{Reference:} \cr Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE,
#' Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H,
#' Hajdas I, Hatt? C, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B,
#' Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Turney CSM,
#' van der Plicht J. 2013.
#' IntCal13 and Marine13 radiocarbon age calibration curves 0--50000 years calBP.
#' \emph{Radiocarbon} \strong{55}(4) https://doi.org/10.2458/azu_js_rc.55.16947. \cr \cr
#'
#' @format ## `intcal13`
#' A data frame with 5,141 rows and 5 columns providing the IntCal13 radiocarbon age
#' calibration curve on a calendar grid spanning from 50,000--0 cal yr BP:
#' \describe{
#' \item{calendar_age}{The calendar age (in cal yr BP)}
#' \item{c14_age}{The \eqn{{}^{14}}C age (in \eqn{{}^{14}}C yr BP)}
#' \item{c14_sig}{The (1-\eqn{\sigma}) uncertainty in the \eqn{{}^{14}}C age}
#' \item{f14c}{The \eqn{{}^{14}}C age expressed as F\eqn{{}^{14}}C concentration}
#' \item{f14c_sig}{The (1-\eqn{\sigma}) uncertainty in the F\eqn{{}^{14}}C concentration}
#' }
#' @source http://doi.org/10.2458/azu_js_rc.55.16947
"intcal13"
#' IntCal09 calibration curve
#'
#' The IntCal09 Northern Hemisphere radiocarbon age calibration curve
#' on a calendar grid spanning from 50,000--0 cal yr BP
#' (Before Present, 0 cal yr BP corresponds to 1950 CE). \cr \cr
#' \emph{Note:} This dataset provides \eqn{{}^{14}}C ages and F\eqn{{}^{14}}C values
#' on a calendar age grid. This is different from the \eqn{{}^{14}}C ages
#' and \eqn{{\Delta}^{14}}C values provided in oxcal .14c files.\cr \cr
#' \strong{Reference:} \cr PJ Reimer, MGL Baillie, E Bard, A Bayliss, JW Beck, PG Blackwell,
#' C Bronk Ramsey, CE Buck, GS Burr, RL Edwards, M Friedrich, PM Grootes,
#' TP Guilderson, I Hajdas, TJ Heaton, AG Hogg, KA Hughen, KF Kaiser, B Kromer,
#' FG McCormac, SW Manning, RW Reimer, DA Richards, JR Southon, S Talamo,
#' CSM Turney, J van der Plicht, CE Weyhenmeyer. 2009.
#' IntCal09 and Marine09 Radiocarbon Age Calibration Curves, 0--50,000 Years cal BP
#' \emph{Radiocarbon} \strong{51}(4):1111-1150 https://doi.org/10.1017/S0033822200034202. \cr \cr
#'
#' @format ## `intcal09`
#' A data frame with 3,521 rows and 5 columns providing the IntCal09 radiocarbon age
#' calibration curve on a calendar grid spanning from 50,000--0 cal yr BP:
#' \describe{
#' \item{calendar_age}{The calendar age (in cal yr BP)}
#' \item{c14_age}{The \eqn{{}^{14}}C age (in \eqn{{}^{14}}C yr BP)}
#' \item{c14_sig}{The (1-\eqn{\sigma}) uncertainty in the \eqn{{}^{14}}C age}
#' \item{f14c}{The \eqn{{}^{14}}C age expressed as F\eqn{{}^{14}}C concentration}
#' \item{f14c_sig}{The (1-\eqn{\sigma}) uncertainty in the F\eqn{{}^{14}}C concentration}
#' }
#' @source http://doi.org/10.1017/S0033822200034202
"intcal09"
#' IntCal04 calibration curve
#'
#' The IntCal04 Northern Hemisphere radiocarbon age calibration curve
#' on a calendar grid spanning from 26,000--0 cal yr BP
#' (Before Present, 0 cal yr BP corresponds to 1950 CE). \cr \cr
#' \emph{Note:} This dataset provides \eqn{{}^{14}}C ages and F\eqn{{}^{14}}C values
#' on a calendar age grid. This is different from the \eqn{{}^{14}}C ages
#' and \eqn{{\Delta}^{14}}C values provided in oxcal .14c files.\cr \cr
#' \strong{Reference:} \cr PJ Reimer, MGL Baillie, E Bard, A Bayliss, JW Beck, C Bertrand, PG Blackwell,
#' CE Buck, G Burr, KB Cutler, PE Damon, RL Edwards, RG Fairbanks, M Friedrich,
#' TP Guilderson, KA Hughen, B Kromer, FG McCormac, S Manning, C Bronk Ramsey,
#' RW Reimer, S Remmele, JR Southon, M Stuiver, S Talamo, FW Taylor,
#' J van der Plicht, and CE Weyhenmeyer. 2004.
#' Intcal04 Terrestrial Radiocarbon Age Calibration, 0--26 Cal Kyr BP.
#' \emph{Radiocarbon} \strong{46}(3):1029-1058 https://doi.org/10.1017/S0033822200032999. \cr \cr
#'
#' @format ## `intcal04`
#' A data frame with 3,301 rows and 5 columns providing the IntCal04 radiocarbon age
#' calibration curve on a calendar grid spanning from 26,000--0 cal yr BP:
#' \describe{
#' \item{calendar_age}{The calendar age (in cal yr BP)}
#' \item{c14_age}{The \eqn{{}^{14}}C age (in \eqn{{}^{14}}C yr BP)}
#' \item{c14_sig}{The (1-\eqn{\sigma}) uncertainty in the \eqn{{}^{14}}C age}
#' \item{f14c}{The \eqn{{}^{14}}C age expressed as F\eqn{{}^{14}}C concentration}
#' \item{f14c_sig}{The (1-\eqn{\sigma}) uncertainty in the F\eqn{{}^{14}}C concentration}
#' }
#' @source https://doi.org/10.1017/S0033822200032999
"intcal04"
#' IntCal98 calibration curve
#'
#' The IntCal98 Northern Hemisphere radiocarbon age calibration curve
#' on a calendar grid spanning from 24,000--0 cal yr BP
#' (Before Present, 0 cal yr BP corresponds to 1950 CE). \cr \cr
#' \emph{Note:} This dataset provides \eqn{{}^{14}}C ages and F\eqn{{}^{14}}C values
#' on a calendar age grid. This is different from the \eqn{{}^{14}}C ages
#' and \eqn{{\Delta}^{14}}C values provided in oxcal .14c files.\cr \cr
#' \strong{Reference:} \cr M. Stuiver, P. J. Reimer, E. Bard, J. W. Beck, G. S. Burr, K. A. Hughen,
#' B. Kromer, F. G. McCormac, J. v. d. Plicht and M. Spurk. 1998.
#' INTCAL98 Radiocarbon Age Calibration, 24,000--0 cal BP.
#' \emph{Radiocarbon} \strong{40}(3):1041-1083 https://doi.org/10.1017/S0033822200019123. \cr \cr
#'
#' @format ## `intcal98`
#' A data frame with 1,538 rows and 5 columns providing the IntCal98 radiocarbon age
#' calibration curve on a calendar grid spanning from 24,000--0 cal yr BP:
#' \describe{
#' \item{calendar_age}{The calendar age (in cal yr BP)}
#' \item{c14_age}{The \eqn{{}^{14}}C age (in \eqn{{}^{14}}C yr BP)}
#' \item{c14_sig}{The (1-\eqn{\sigma}) uncertainty in the \eqn{{}^{14}}C age}
#' \item{f14c}{The \eqn{{}^{14}}C age expressed as F\eqn{{}^{14}}C concentration}
#' \item{f14c_sig}{The (1-\eqn{\sigma}) uncertainty in the F\eqn{{}^{14}}C concentration}
#' }
#' @source https://doi.org/10.1017/S0033822200019123
"intcal98"
#' SHCal20 calibration curve
#'
#' The SHCal20 Southern Hemisphere radiocarbon age calibration curve
#' on a calendar grid spanning from 55,000--0 cal yr BP
#' (Before Present, 0 cal yr BP corresponds to 1950 CE). \cr \cr
#' \emph{Note:} This dataset provides \eqn{{}^{14}}C ages and F\eqn{{}^{14}}C values
#' on a calendar age grid. This is different from the \eqn{{}^{14}}C ages
#' and \eqn{{\Delta}^{14}}C values provided in oxcal .14c files.\cr \cr
#' \strong{Reference:} \cr Hogg AG, Heaton TJ, Hua Q, Palmer JG, Turney CSM, Southon J, Bayliss A, Blackwell PG,
#' Boswijk G, Bronk Ramsey C, Pearson C, Petchey F, Reimer P, Reimer R, Wacker L.
#' 2020.
#' SHCal20 Southern Hemisphere calibration, 0--55,000 years cal BP.
#' \emph{Radiocarbon} \strong{62} https://doi.org/10.1017/RDC.2020.59. \cr \cr
#'
#' @format ## `shcal20`
#' A data frame with 9,501 rows and 5 columns providing the SHCal20 radiocarbon age
#' calibration curve on a calendar grid spanning from 55,000--0 cal yr BP:
#' \describe{
#' \item{calendar_age}{The calendar age (in cal yr BP)}
#' \item{c14_age}{The \eqn{{}^{14}}C age (in \eqn{{}^{14}}C yr BP)}
#' \item{c14_sig}{The (1-\eqn{\sigma}) uncertainty in the \eqn{{}^{14}}C age}
#' \item{f14c}{The \eqn{{}^{14}}C age expressed as F\eqn{{}^{14}}C concentration}
#' \item{f14c_sig}{The (1-\eqn{\sigma}) uncertainty in the F\eqn{{}^{14}}C concentration}
#' }
#' @source http://doi.org/10.1017/RDC.2020.59
"shcal20"
#' SHCal13 calibration curve
#'
#' The SHCal13 Southern Hemisphere radiocarbon age calibration curve
#' on a calendar grid spanning from 50,000--0 cal yr BP
#' (Before Present, 0 cal yr BP corresponds to 1950 CE). \cr \cr
#' \emph{Note:} This dataset provides \eqn{{}^{14}}C ages and F\eqn{{}^{14}}C values
#' on a calendar age grid. This is different from the \eqn{{}^{14}}C ages
#' and \eqn{{\Delta}^{14}}C values provided in oxcal .14c files.\cr \cr
#' \strong{Reference:} \cr Alan G Hogg, Quan Hua, Paul G Blackwell, Caitlin E Buck, Thomas P Guilderson,
#' Timothy J Heaton, Mu Niu, Jonathan G Palmer, Paula J Reimer, Ron W Reimer,
#' Christian S M Turney, Susan R H Zimmerman. 2013.
#' SHCal13 Southern Hemisphere Calibration, 0-50,000 Years cal BP.
#' \emph{Radiocarbon} \strong{55}(4):1889--1903 https://doi.org/10.2458/azu_js_rc.55.16783. \cr \cr
#'
#' @format ## `shcal13`
#' A data frame with 5,141 rows and 5 columns providing the SHCal13 radiocarbon age
#' calibration curve on a calendar grid spanning from 50,000--0 cal yr BP:
#' \describe{
#' \item{calendar_age}{The calendar age (in cal yr BP)}
#' \item{c14_age}{The \eqn{{}^{14}}C age (in \eqn{{}^{14}}C yr BP)}
#' \item{c14_sig}{The (1-\eqn{\sigma}) uncertainty in the \eqn{{}^{14}}C age}
#' \item{f14c}{The \eqn{{}^{14}}C age expressed as F\eqn{{}^{14}}C concentration}
#' \item{f14c_sig}{The (1-\eqn{\sigma}) uncertainty in the F\eqn{{}^{14}}C concentration}
#' }
#' @source http://doi.org/10.2458/azu_js_rc.55.16783
"shcal13"
#' SHCal04 calibration curve
#'
#' The SHCal04 Southern Hemisphere radiocarbon age calibration curve
#' on a calendar grid spanning from 11,000--0 cal yr BP
#' (Before Present, 0 cal yr BP corresponds to 1950 CE). \cr \cr
#' \emph{Note:} This dataset provides \eqn{{}^{14}}C ages and F\eqn{{}^{14}}C values
#' on a calendar age grid. This is different from the \eqn{{}^{14}}C ages
#' and \eqn{{\Delta}^{14}}C values provided in oxcal .14c files.\cr \cr
#' \strong{Reference:} \cr FG McCormac, AG Hogg, PG Blackwell, CE Buck, TFG Higham, and PJ Reimer
#' 2004.
#' SHCal04 Southern Hemisphere Calibration 0--11.0 cal kyr BP.
#' \emph{Radiocarbon} \strong{46}(3):1087--1092 https://doi.org/10.1017/S0033822200033014. \cr \cr
#'
#' @format ## `shcal04`
#' A data frame with 2,202 rows and 5 columns providing the SHCal04 radiocarbon age
#' calibration curve on a calendar grid spanning from 11,000--0 cal yr BP:
#' \describe{
#' \item{calendar_age}{The calendar age (in cal yr BP)}
#' \item{c14_age}{The \eqn{{}^{14}}C age (in \eqn{{}^{14}}C yr BP)}
#' \item{c14_sig}{The (1-\eqn{\sigma}) uncertainty in the \eqn{{}^{14}}C age}
#' \item{f14c}{The \eqn{{}^{14}}C age expressed as F\eqn{{}^{14}}C concentration}
#' \item{f14c_sig}{The (1-\eqn{\sigma}) uncertainty in the F\eqn{{}^{14}}C concentration}
#' }
#' @source http://doi.org/10.1017/S0033822200033014
"shcal04"
#' Example artificial data - Mixture of Normal Phases
#'
#' 50 simulated radiocarbon determinations for which the underlying calendar ages are
#' drawn from a mixture of two normals:
#' \deqn{f(\theta) = 0.45 N(3500, 200^2) + 0.55 N(5000, 100^2) }
#' i.e., a mixture of a normal centred around 3500 cal yr BP; and another
#' (slightly more concentrated/narrower) normal centred around 5000 cal yr BP. \cr \cr
#' The corresponding 50 radiocarbon ages were then simulated using the IntCal20 calibration curve
#' incorporating both the uncertainty in the calibration curve and a hypothetical measurement
#' uncertainty:
#' \deqn{X_i | \theta_i \sim N(m(\theta_i), \rho(\theta_i)^2 + \sigma_{i,\textrm{lab}}^2),}
#' where \eqn{m(\theta_i)} and \eqn{\rho(\theta_i)} are the IntCal20 pointwise
#' means and uncertainties; and \eqn{\sigma_{i,\textrm{lab}}}, the simulated
#' laboratory measurement uncertainty, was fixed at a common value of 25 \eqn{{}^{14}}C yrs. \cr \cr
#' This dataset is included simply to give some quick-to-run examples.
#'
#' @examples
#' # Plotting calendar age density underlying two_normals
#' # Useful for comparisons against estimation techniques
#' weights_true <- c(0.45, 0.55)
#' cluster_means_true_calBP <- c(3500, 5000)
#' cluster_precisions_true <- 1 / c(200, 100)^2
#'
#' # Create mixture density
#' truedens <- function(t, w, truemean, trueprec) {
#' dens <- 0
#' for(i in 1:length(w)) {
#' dens <- dens + w[i] * dnorm(t, mean = truemean[i], sd = 1/sqrt(trueprec[i]))
#' }
#' dens
#' }
#'
#' # Visualise mixture
#' curve(truedens(
#' x,
#' w = weights_true,
#' truemean = cluster_means_true_calBP,
#' trueprec = cluster_precisions_true),
#' from = 2500, to = 7000, n = 401,
#' xlim = c(7000, 2500),
#' xlab = "Calendar Age (cal yr BP)",
#' ylab = "Density",
#' col = "red"
#' )
#'
#' @format ## `two_normals`
#' A data frame with 50 rows and 4 columns:
#' \describe{
#' \item{c14_age}{The simulated \eqn{{}^{14}}C age (in \eqn{{}^{14}}C yr BP)}
#' \item{c14_sig}{The (fixed) \eqn{{}^{14}}C age measurement uncertainty used in the simulation (set at 25 \eqn{{}^{14}}C yrs)}
#' \item{f14c}{The corresponding simulated values of F\eqn{{}^{14}}C concentration}
#' \item{f14c_sig}{The (fixed) corresponding F\eqn{{}^{14}}C measurement uncertainty used in the simulation}
#' }
"two_normals"
#' Example artificial data - Uniform Phase
#'
#' 40 simulated radiocarbon determinations for which the underlying calendar ages are
#' drawn (uniformly at random) from the period 550--500 cal yr BP.
#' \deqn{f(\theta) = U[550, 500]}
#' The observational uncertainty of each determination is set to be 15 \eqn{{}^{14}}C yrs. \cr \cr
#' The corresponding \eqn{{}^{14}}C ages are then simulated based upon the IntCal20 calibration curve
#' (convolved with the 15 \eqn{{}^{14}}C yr measurement uncertainty):
#' \deqn{X_i | \theta_i \sim N(m(\theta_i), \rho(\theta_i)^2 + 15^2),}
#' where \eqn{m(\theta_i)} and \eqn{\rho(\theta_i)} are the IntCal20 pointwise
#' means and uncertainties. \cr \cr
#' This dataset matches that used in the package vignette to illustrate the Poisson process modelling.
#'
#' @format ## `pp_uniform_phase`
#' A data frame with 40 rows and 4 columns:
#' \describe{
#' \item{c14_age}{The simulated \eqn{{}^{14}}C age (in \eqn{{}^{14}}C yr BP)}
#' \item{c14_sig}{The (fixed) \eqn{{}^{14}}C age measurement uncertainty used in the simulation (set at 15 \eqn{{}^{14}}C yrs)}
#' \item{f14c}{The corresponding simulated values of F\eqn{{}^{14}}C concentration}
#' \item{f14c_sig}{The (fixed) corresponding F\eqn{{}^{14}}C measurement uncertainty used in the simulation}
#' }
"pp_uniform_phase"
#' Example real-life data - Irish Rath
#'
#' 255 radiocarbon determinations collated by Kerr and McCormick related to the
#' building and use of raths in Ireland in the early-medieval period. \cr \cr
#' \strong{Reference:} \cr
#' Kerr, T., McCormick, F., 2014. Statistics, sunspots and settlement:
#' influences on sum of probability curves.
#' \emph{Journal of Archaeological Science} \strong{41}, 493--501.
#'
#' @format ## `kerr`
#' A data frame with 255 rows and 4 columns:
#' \describe{
#' \item{c14_age}{The observed \eqn{{}^{14}}C ages of the samples (in \eqn{{}^{14}}C yr BP)}
#' \item{c14_sig}{The uncertainty in the observed \eqn{{}^{14}}C ages reported by the radiocarbon laboratory}
#' \item{f14c}{The observed F\eqn{{}^{14}}C concentrations}
#' \item{f14c_sig}{The uncertainty in the observed F\eqn{{}^{14}}C concentrations reported by the radiocarbon laboratory}
#' }
#' @source http://doi.org/10.1016/j.jas.2013.09.002
"kerr"
#' Example real-life data - Palaeo-Indian demography
#'
#' 628 radiocarbon determinations collated by Buchanan et al. representing the
#' ages of distinct archaeological sites found across Canada and North America
#' during the time of the palaeoindians. \cr \cr
#' \strong{Reference:} \cr
#' Buchanan, B., Collard, M., Edinborough, K., 2008. Paleoindian demography and
#' the extraterrestrial impact hypothesis. \emph{Proceedings of the National Academy
#' of Sciences} \strong{105}, 11651--11654.
#'
#' @format ## `buchanan`
#' A data frame with 628 rows and 4 columns:
#' \describe{
#' \item{c14_age}{The observed \eqn{{}^{14}}C ages of the samples (in \eqn{{}^{14}}C yr BP)}
#' \item{c14_sig}{The uncertainty in the observed \eqn{{}^{14}}C ages reported by the radiocarbon laboratory}
#' \item{f14c}{The observed F\eqn{{}^{14}}C concentrations}
#' \item{f14c_sig}{The uncertainty in the observed F\eqn{{}^{14}}C concentrations reported by the radiocarbon laboratory}
#' }
#' @source http://doi.org/10.1073/pnas.0803762105
"buchanan"
#' Example real-life data - Population Decline in Iron Age Ireland
#'
#' 2021 radiocarbon determinations collated by Armit et al. from archaeological
#' groups operating in Ireland, to investigate whether a wetter environment
#' around 2700 cal yr BP led to a population collapse. \cr \cr
#' \strong{Reference:} \cr
#' Armit, I., Swindles, G.T., Becker, K., Plunkett, G., Blaauw, M., 2014. Rapid
#' climate change did not cause population collapse at the end of the European
#' Bronze Age. \emph{Proceedings of the National Academy
#' of Sciences} \strong{111}, 17045--17049.
#'
#' @format ## `armit`
#' A data frame with 2021 rows and 4 columns:
#' \describe{
#' \item{c14_age}{The observed \eqn{{}^{14}}C ages of the samples (in \eqn{{}^{14}}C yr BP)}
#' \item{c14_sig}{The uncertainty in the observed \eqn{{}^{14}}C ages reported by the radiocarbon laboratory}
#' \item{f14c}{The observed F\eqn{{}^{14}}C concentrations}
#' \item{f14c_sig}{The uncertainty in the observed F\eqn{{}^{14}}C concentrations reported by the radiocarbon laboratory}
#' }
#' @source http://doi.org/10.1073/pnas.1408028111
"armit"
#' Example real-life data - Alces in Yukon and Alaska
#'
#' 58 radiocarbon determinations collated by Dale Guthrie, R. related to
#' Alces (moose) in Yukon and Alaska. Samples
#' are restricted to those between 25,000--6000 \eqn{{}^{14}}C yrs BP. \cr \cr
#' \strong{Reference:} \cr
#' Dale Guthrie, R. New carbon dates link climatic change with human colonization
#' and Pleistocene extinctions. \emph{Nature} \strong{441}, 207--209 (2006).
#' https://doi.org/10.1038/nature04604
#'
#' @format ## `alces`
#' A data frame with 58 rows and 7 columns:
#' \describe{
#' \item{lab_code}{The sample code for the \eqn{{}^{14}}C laboratory}
#' \item{site_code}{The site/museum code}
#' \item{location}{The location of the sample}
#' \item{c14_age}{The observed \eqn{{}^{14}}C ages of the samples (in \eqn{{}^{14}}C yr BP)}
#' \item{c14_sig}{The uncertainty in the observed \eqn{{}^{14}}C ages reported by the radiocarbon laboratory}
#' \item{f14c}{The observed F\eqn{{}^{14}}C concentrations}
#' \item{f14c_sig}{The uncertainty in the observed F\eqn{{}^{14}}C concentrations reported by the radiocarbon laboratory}
#' }
#' @source https://doi.org/10.1038/nature04604
"alces"
#' Example real-life data - Bison in Yukon and Alaska
#'
#' 64 radiocarbon determinations collated by Dale Guthrie, R. related to
#' Bison in Yukon and Alaska. Samples
#' are restricted to those between 25,000--6000 \eqn{{}^{14}}C yrs BP.\cr \cr
#' \strong{Reference:} \cr
#' Dale Guthrie, R. New carbon dates link climatic change with human colonization
#' and Pleistocene extinctions. \emph{Nature} \strong{441}, 207--209 (2006).
#' https://doi.org/10.1038/nature04604
#'
#' @format ## `bison`
#' A data frame with 64 rows and 7 columns:
#' \describe{
#' \item{lab_code}{The sample code for the \eqn{{}^{14}}C laboratory}
#' \item{site_code}{The site/museum code}
#' \item{location}{The location of the sample}
#' \item{c14_age}{The observed \eqn{{}^{14}}C ages of the samples (in \eqn{{}^{14}}C yr BP)}
#' \item{c14_sig}{The uncertainty in the observed \eqn{{}^{14}}C ages reported by the radiocarbon laboratory}
#' \item{f14c}{The observed F\eqn{{}^{14}}C concentrations}
#' \item{f14c_sig}{The uncertainty in the observed F\eqn{{}^{14}}C concentrations reported by the radiocarbon laboratory}
#' }
#' @source https://doi.org/10.1038/nature04604
"bison"
#' Example real-life data - Cervus in Yukon and Alaska
#'
#' 63 radiocarbon determinations collated by Dale Guthrie, R. related to
#' Cervus (wapiti) in Yukon and Alaska. Samples
#' are restricted to those between 25,000--6000 \eqn{{}^{14}}C yrs BP. \cr \cr
#' \strong{Reference:} \cr
#' Dale Guthrie, R. New carbon dates link climatic change with human colonization
#' and Pleistocene extinctions. \emph{Nature} \strong{441}, 207--209 (2006).
#' https://doi.org/10.1038/nature04604
#'
#' @format ## `cervus`
#' A data frame with 63 rows and 7 columns:
#' \describe{
#' \item{lab_code}{The sample code for the \eqn{{}^{14}}C laboratory}
#' \item{site_code}{The site/museum code}
#' \item{location}{The location of the sample}
#' \item{c14_age}{The observed \eqn{{}^{14}}C ages of the samples (in \eqn{{}^{14}}C yr BP)}
#' \item{c14_sig}{The uncertainty in the observed \eqn{{}^{14}}C ages reported by the radiocarbon laboratory}
#' \item{f14c}{The observed F\eqn{{}^{14}}C concentrations}
#' \item{f14c_sig}{The uncertainty in the observed F\eqn{{}^{14}}C concentrations reported by the radiocarbon laboratory}
#' }
#' @source https://doi.org/10.1038/nature04604
"cervus"
#' Example real-life data - Equus in Yukon and Alaska
#'
#' 84 radiocarbon determinations collated by Dale Guthrie, R. related to
#' Equus (horse) in Yukon and Alaska. Samples
#' are restricted to those between 25,000--6000 \eqn{{}^{14}}C yrs BP. \cr \cr
#' \strong{Reference:} \cr
#' Dale Guthrie, R. New carbon dates link climatic change with human colonization
#' and Pleistocene extinctions. \emph{Nature} \strong{441}, 207--209 (2006).
#' https://doi.org/10.1038/nature04604
#'
#' @format ## `equus`
#' A data frame with 84 rows and 7 columns:
#' \describe{
#' \item{lab_code}{The sample code for the \eqn{{}^{14}}C laboratory}
#' \item{site_code}{The site/museum code}
#' \item{location}{The location of the sample}
#' \item{c14_age}{The observed \eqn{{}^{14}}C ages of the samples (in \eqn{{}^{14}}C yr BP)}
#' \item{c14_sig}{The uncertainty in the observed \eqn{{}^{14}}C ages reported by the radiocarbon laboratory}
#' \item{f14c}{The observed F\eqn{{}^{14}}C concentrations}
#' \item{f14c_sig}{The uncertainty in the observed F\eqn{{}^{14}}C concentrations reported by the radiocarbon laboratory}
#' }
#' @source https://doi.org/10.1038/nature04604
"equus"
#' Example real-life data - Humans in Yukon and Alaska
#'
#' 46 radiocarbon determinations collated by Dale Guthrie, R. related to
#' archaeological sites (i.e., evidence of human existence) in Alaska. Samples
#' are restricted to those between 25,000--6000 \eqn{{}^{14}}C yrs BP. \cr \cr
#' \strong{Reference:} \cr
#' Dale Guthrie, R. New carbon dates link climatic change with human colonization
#' and Pleistocene extinctions. \emph{Nature} \strong{441}, 207--209 (2006).
#' https://doi.org/10.1038/nature04604
#'
#' @format ## `human`
#' A data frame with 46 rows and 7 columns:
#' \describe{
#' \item{lab_code}{The sample code for the \eqn{{}^{14}}C laboratory}
#' \item{site_code}{The site/museum code}
#' \item{location}{The location of the sample}
#' \item{c14_age}{The observed \eqn{{}^{14}}C ages of the samples (in \eqn{{}^{14}}C yr BP)}
#' \item{c14_sig}{The uncertainty in the observed \eqn{{}^{14}}C ages reported by the radiocarbon laboratory}
#' \item{f14c}{The observed F\eqn{{}^{14}}C concentrations}
#' \item{f14c_sig}{The uncertainty in the observed F\eqn{{}^{14}}C concentrations reported by the radiocarbon laboratory}
#' }
#' @source https://doi.org/10.1038/nature04604
"human"
#' Example real-life data - Mammuthus in Yukon and Alaska
#'
#' 117 radiocarbon determinations collated by Dale Guthrie, R. related to
#' Mammuthus (mammoth) in Yukon and Alaska. Samples
#' are restricted to those between 25,000--6000 \eqn{{}^{14}}C yrs BP. \cr \cr
#' \strong{Reference:} \cr
#' Dale Guthrie, R. New carbon dates link climatic change with human colonization
#' and Pleistocene extinctions. \emph{Nature} \strong{441}, 207--209 (2006).
#' https://doi.org/10.1038/nature04604
#'
#' @format ## `mammuthus`
#' A data frame with 117 rows and 7 columns:
#' \describe{
#' \item{lab_code}{The sample code for the \eqn{{}^{14}}C laboratory}
#' \item{site_code}{The site/museum code}
#' \item{location}{The location of the sample}
#' \item{c14_age}{The observed \eqn{{}^{14}}C ages of the samples (in \eqn{{}^{14}}C yr BP)}
#' \item{c14_sig}{The uncertainty in the observed \eqn{{}^{14}}C ages reported by the radiocarbon laboratory}
#' \item{f14c}{The observed F\eqn{{}^{14}}C concentrations}
#' \item{f14c_sig}{The uncertainty in the observed F\eqn{{}^{14}}C concentrations reported by the radiocarbon laboratory}
#' }
#' @source https://doi.org/10.1038/nature04604
"mammuthus"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.