Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
dev='png',
fig.width=7,
fig.height=5.5 # ,
# dev.args=list(antialias = "none")
)
## ----setup--------------------------------------------------------------------
library(carbondate)
## ----calculate_gr_multiple, results=FALSE, eval=FALSE-------------------------
# all_outputs <- list()
# for (i in 1:3) {
# set.seed(i + 1)
# all_outputs[[i]] <- PolyaUrnBivarDirichlet(
# kerr$c14_age, kerr$c14_sig, intcal20, n_iter = 1e4)
# }
# PlotGelmanRubinDiagnosticMultiChain(all_outputs)
## ----out.width= "100%", echo = FALSE------------------------------------------
knitr::include_graphics("figures-convergence/calculate_gr_multiple-1.png")
## ----calculate_gr, results=FALSE, eval=FALSE----------------------------------
# set.seed(3)
# output <- PolyaUrnBivarDirichlet(
# kerr$c14_age, kerr$c14_sig, intcal20, n_iter = 2e4)
#
# PlotGelmanRubinDiagnosticSingleChain(output, n_burn = 5e3)
## ----out.width= "100%", echo = FALSE------------------------------------------
knitr::include_graphics("figures-convergence/calculate_gr-1.png")
## ----calculate_polya_kerr, results=FALSE, eval=FALSE--------------------------
# outputs <- list()
# for (i in 1:3) {
# set.seed(i+1)
# outputs[[i]] <- PolyaUrnBivarDirichlet(
# rc_determinations = kerr$c14_age,
# rc_sigmas = kerr$c14_sig,
# calibration_curve=intcal20,
# n_iter = 1e4)
# outputs[[i]]$label <- paste("Seed =", i)
# }
# PlotPredictiveCalendarAgeDensity(
# outputs, n_posterior_samples = 500, denscale = 2, interval_width = "1sigma")
## ----out.width= "100%", echo = FALSE------------------------------------------
knitr::include_graphics("figures-convergence/calculate_polya_kerr-1.png")
## ----calculate_polya_normals, results=FALSE, eval=FALSE-----------------------
# outputs <- list()
# for (i in 1:3) {
# set.seed(i + 1)
# outputs[[i]] <- PolyaUrnBivarDirichlet(
# rc_determinations = two_normals$c14_age,
# rc_sigmas = two_normals$c14_sig,
# calibration_curve=intcal20,
# n_iter = 1e4)
# outputs[[i]]$label <- paste("Seed =", i)
# }
# PlotPredictiveCalendarAgeDensity(
# outputs, n_posterior_samples = 500, denscale = 2, interval_width = "1sigma")
## ----out.width= "100%", echo = FALSE------------------------------------------
knitr::include_graphics("figures-convergence/calculate_polya_normals-1.png")
## ----calculate_kld, results=FALSE, eval=FALSE---------------------------------
# set.seed(50)
# output <- WalkerBivarDirichlet(
# rc_determinations = kerr$c14_age,
# rc_sigmas = kerr$c14_sig,
# calibration_curve=intcal20,
# n_iter = 1e5)
#
# PlotConvergenceData(output)
## ----out.width= "100%", echo = FALSE------------------------------------------
knitr::include_graphics("figures-convergence/calculate_kld-1.png")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.