weibull4: Four-Parametric Weibull Function

Description Usage Arguments Details Value See Also Examples

Description

Four-parametric Weibull function and its definite integral.

Usage

1
2
3
fweibull4(x, p)

aweibull4(p, lower, upper)

Arguments

x

vector of function arguments,

p

vector of function parameters with: p[1] vertical shift (zero offset), p[2] vertical scaling, p[3] shape parameter a of dweibull, and p[4] scale parameter b of dweibull,

lower

lower limit of the cumulative (integrated) function,

upper

upper limit of the cumulative (integrated) function.

Details

The four-parametric Weibull function is essentially based on the Weibull density function dweibull and its integral by the Weibull distribution function pweibull with two additional parameters for y scaling and zero offset. It can be given by:

f(x) = p1 + p2 (p3/p4) (x/p4)^(p3-1) exp(- (x/p4)^p3)

for x ≥ 0.

Value

fweibull4 gives the Weibull function and aweibull4 its definite integral (cumulative sum or area under curve).

See Also

dweibull, weibull6, fitweibull, peakwindow, CDW, cardidates

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
x <- seq(0, 5, 0.02)
plot(x, fweibull4(x, c(0, 1, 2, 1)), type = "l", ylim = c(0, 2))
points(x, dweibull(x, 2, 1), pch = "+") ## identical to former

## shape
lines(x, fweibull4(x, c(0, 2, 1.5, 1)), type = "l", col = "orange")
## horizontal scaling
lines(x, fweibull4(x, c(0, 2, 2, 2)), type = "l", col = "green")
## shifting
lines(x, fweibull4(x, c(1, 1, 2, 1)), type = "l", col = "blue")
## vertical scaling
lines(x, fweibull4(x, c(0, 2, 2, 1)), type = "l", col = "red")


## definite integral
p <- c(0, 1, 2, 2)
plot(x, aweibull4(p, lower = 0, upper = x))

p <- c(0.1, 1, 2, 2)
plot(x, aweibull4(p, lower = 0, upper = x))

Example output

Loading required package: boot
Loading required package: pastecs
Loading required package: lattice

Attaching package: 'lattice'

The following object is masked from 'package:boot':

    melanoma

cardidates documentation built on May 2, 2019, 4:15 a.m.