Nothing
Code
wilson_dbl <- proportion_ci_wilson(x_dbl, conf.level = 0.9, correct = FALSE)
Code
wilsoncc_dbl <- proportion_ci_wilson(x_dbl, conf.level = 0.9, correct = TRUE)
Code
wilson_lgl <- proportion_ci_wilson(x_lgl, conf.level = 0.9, correct = FALSE)
Code
proportion_ci_wilson(x_rsp, conf.level = 0.9)
Output
$N
[1] 10
$conf.level
[1] 0.9
$estimate
p
0.5
$statistic
X-squared
0
$p.value
[1] 1
$parameter
df
1
$conf.low
[1] 0.2692718
$conf.high
[1] 0.7307282
$method
Wilson Confidence Interval without continuity correction
$alternative
[1] "two.sided"
Code
proportion_ci_wilson(x_true)
Output
$N
[1] 32
$conf.level
[1] 0.95
$estimate
p
1
$statistic
X-squared
32
$p.value
[1] 1.541726e-08
$parameter
df
1
$conf.low
[1] 0.8928208
$conf.high
[1] 1
$method
Wilson Confidence Interval without continuity correction
$alternative
[1] "two.sided"
Code
proportion_ci_wilson(x_false)
Output
$N
[1] 32
$conf.level
[1] 0.95
$estimate
p
0
$statistic
X-squared
32
$p.value
[1] 1.541726e-08
$parameter
df
1
$conf.low
[1] 0
$conf.high
[1] 0.1071792
$method
Wilson Confidence Interval without continuity correction
$alternative
[1] "two.sided"
Code
wald_dbl <- proportion_ci_wald(x_dbl, conf.level = 0.9, correct = FALSE)
Code
waldcc_dbl <- proportion_ci_wald(x_dbl, conf.level = 0.9, correct = TRUE)
Code
wald_lgl <- proportion_ci_wald(x_lgl, conf.level = 0.9, correct = FALSE)
Code
proportion_ci_wald(x_rsp, conf.level = 0.95, correct = TRUE)
Output
$N
[1] 10
$estimate
[1] 0.5
$conf.low
[1] 0.1401025
$conf.high
[1] 0.8598975
$conf.level
[1] 0.95
$method
Wald Confidence Interval with continuity correction
Code
proportion_ci_wald(x_true)
Output
$N
[1] 32
$estimate
[1] 1
$conf.low
[1] 1
$conf.high
[1] 1
$conf.level
[1] 0.95
$method
Wald Confidence Interval without continuity correction
Code
proportion_ci_wald(x_false)
Output
$N
[1] 32
$estimate
[1] 0
$conf.low
[1] 0
$conf.high
[1] 0
$conf.level
[1] 0.95
$method
Wald Confidence Interval without continuity correction
Code
clopper_pearson_dbl <- proportion_ci_clopper_pearson(x_dbl, conf.level = 0.9)
Code
clopper_pearson_lgl <- proportion_ci_clopper_pearson(x_lgl, conf.level = 0.9)
Code
proportion_ci_clopper_pearson(x_rsp, conf.level = 0.95)
Output
$N
[1] 10
$conf.level
[1] 0.95
$estimate
probability of success
0.5
$statistic
number of successes
5
$p.value
[1] 1
$parameter
number of trials
10
$conf.low
[1] 0.187086
$conf.high
[1] 0.812914
$method
[1] "Clopper-Pearson Confidence Interval"
$alternative
[1] "two.sided"
Code
proportion_ci_wilson(x_true)
Output
$N
[1] 32
$conf.level
[1] 0.95
$estimate
p
1
$statistic
X-squared
32
$p.value
[1] 1.541726e-08
$parameter
df
1
$conf.low
[1] 0.8928208
$conf.high
[1] 1
$method
Wilson Confidence Interval without continuity correction
$alternative
[1] "two.sided"
Code
proportion_ci_wilson(x_false)
Output
$N
[1] 32
$conf.level
[1] 0.95
$estimate
p
0
$statistic
X-squared
32
$p.value
[1] 1.541726e-08
$parameter
df
1
$conf.low
[1] 0
$conf.high
[1] 0.1071792
$method
Wilson Confidence Interval without continuity correction
$alternative
[1] "two.sided"
Code
agresti_coull_dbl <- proportion_ci_agresti_coull(x_dbl, conf.level = 0.9)
Code
agresti_coull_lgl <- proportion_ci_agresti_coull(x_lgl, conf.level = 0.9)
Code
proportion_ci_agresti_coull(x_rsp, conf.level = 0.95)
Output
$N
[1] 10
$estimate
[1] 0.5
$conf.low
[1] 0.2365931
$conf.high
[1] 0.7634069
$conf.level
[1] 0.95
$method
[1] "Agresti-Coull Confidence Interval"
Code
proportion_ci_agresti_coull(x_true)
Output
$N
[1] 32
$estimate
[1] 1
$conf.low
[1] 0.8726819
$conf.high
[1] 1
$conf.level
[1] 0.95
$method
[1] "Agresti-Coull Confidence Interval"
Code
proportion_ci_agresti_coull(x_false)
Output
$N
[1] 32
$estimate
[1] 0
$conf.low
[1] 0
$conf.high
[1] 0.1273181
$conf.level
[1] 0.95
$method
[1] "Agresti-Coull Confidence Interval"
Code
jeffreys_dbl <- proportion_ci_jeffreys(x_dbl, conf.level = 0.9)
Code
jeffreys_lgl <- proportion_ci_jeffreys(x_lgl, conf.level = 0.9)
Code
proportion_ci_jeffreys(x_rsp, conf.level = 0.95)
Output
$N
[1] 10
$estimate
[1] 0.5
$conf.low
[1] 0.2235287
$conf.high
[1] 0.7764713
$conf.level
[1] 0.95
$method
Jeffreys Interval
Code
proportion_ci_jeffreys(x_true)
Output
$N
[1] 32
$estimate
[1] 1
$conf.low
[1] 0.9250722
$conf.high
[1] 1
$conf.level
[1] 0.95
$method
Jeffreys Interval
Code
proportion_ci_jeffreys(x_false)
Output
$N
[1] 32
$estimate
[1] 0
$conf.low
[1] 0
$conf.high
[1] 0.07492776
$conf.level
[1] 0.95
$method
Jeffreys Interval
Code
proportion_ci_wilson(x_dbl, conf.level = c(0.9, 0.9))
Condition
Error in `proportion_ci_wilson()`:
! The `conf.level` argument must be length 1.
Code
proportion_ci_wilson(mtcars$cyl)
Condition
Error in `proportion_ci_wilson()`:
! Expecting `x` to be either <logical> or <numeric/integer> coded as 0 and 1.
Code
proportion_ci_strat_wilson(x = rsp, strata = strata, weights = weights,
correct = FALSE)
Output
$N
[1] 80
$estimate
[1] 0.625
$conf.low
[1] 0.4867191
$conf.high
[1] 0.7186381
$conf.level
[1] 0.95
$method
Stratified Wilson Confidence Interval without continuity correction
Code
proportion_ci_strat_wilson(x = rsp, strata = strata, weights = weights,
correct = TRUE)
Output
$N
[1] 80
$estimate
[1] 0.625
$conf.low
[1] 0.4482566
$conf.high
[1] 0.7531474
$conf.level
[1] 0.95
$method
Stratified Wilson Confidence Interval with continuity correction
Code
proportion_ci_strat_wilson(x = as.numeric(rsp), strata = strata, weights = weights)
Output
$N
[1] 80
$estimate
[1] 0.625
$conf.low
[1] 0.4867191
$conf.high
[1] 0.7186381
$conf.level
[1] 0.95
$method
Stratified Wilson Confidence Interval without continuity correction
Code
proportion_ci_strat_wilson(x = as.numeric(rsp), strata = strata)
Output
$N
[1] 80
$estimate
[1] 0.625
$conf.low
[1] 0.5242016
$conf.high
[1] 0.7268788
$conf.level
[1] 0.95
$weights
a.x b.x a.y b.y a.z b.z
0.2111332 0.1890860 0.1180990 0.1544903 0.1737106 0.1534809
$method
Stratified Wilson Confidence Interval without continuity correction
Code
proportion_ci_strat_wilson(x = rep_len(TRUE, length(rsp)), strata = strata,
weights = weights)
Condition
Error in `proportion_ci_strat_wilson()`:
! All values in `x` argument are either `TRUE` or `FALSE` and CI is not estimable.
Code
proportion_ci_strat_wilson(x = rep_len(FALSE, length(rsp)), strata = strata,
weights = weights)
Condition
Error in `proportion_ci_strat_wilson()`:
! All values in `x` argument are either `TRUE` or `FALSE` and CI is not estimable.
Code
proportion_ci_strat_wilson(x = as.numeric(rsp), strata = strata,
max.iterations = -1)
Condition
Error in `proportion_ci_strat_wilson()`:
! Argument `max.iterations` must be a positive integer.
Code
proportion_ci_strat_wilson(x = as.numeric(rsp), strata = strata,
max.iterations = -1)
Condition
Error in `proportion_ci_strat_wilson()`:
! Argument `max.iterations` must be a positive integer.
Code
proportion_ci_strat_wilson(x = as.numeric(rsp), strata = strata, weights = weights +
pi / 5)
Condition
Error in `proportion_ci_strat_wilson()`:
! The sum of the `weights` argument must be 1
Code
proportion_ci_strat_wilson(x = as.numeric(rsp), strata = strata, weights = weights +
pi)
Condition
Error in `proportion_ci_strat_wilson()`:
! The `weights` argument must be in the interval `[0, 1]`.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.