proportion_ci | R Documentation |
Functions to calculate different proportion confidence intervals for use in ard_proportion()
.
proportion_ci_wald(x, conf.level = 0.95, correct = FALSE)
proportion_ci_wilson(x, conf.level = 0.95, correct = FALSE)
proportion_ci_clopper_pearson(x, conf.level = 0.95)
proportion_ci_agresti_coull(x, conf.level = 0.95)
proportion_ci_jeffreys(x, conf.level = 0.95)
proportion_ci_strat_wilson(
x,
strata,
weights = NULL,
conf.level = 0.95,
max.iterations = 10L,
correct = FALSE
)
is_binary(x)
x |
vector of a binary values, i.e. a logical vector, or numeric with values |
conf.level |
( |
correct |
( |
strata |
( |
weights |
( |
max.iterations |
( |
Confidence interval of a proportion.
proportion_ci_wald()
: Calculates the Wald interval by following the usual textbook definition
for a single proportion confidence interval using the normal approximation.
\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}
proportion_ci_wilson()
: Calculates the Wilson interval by calling stats::prop.test()
.
Also referred to as Wilson score interval.
\frac{\hat{p} +
\frac{z^2_{\alpha/2}}{2n} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n} +
\frac{z^2_{\alpha/2}}{4n^2}}}{1 + \frac{z^2_{\alpha/2}}{n}}
proportion_ci_clopper_pearson()
: Calculates the Clopper-Pearson interval by calling stats::binom.test()
.
Also referred to as the exact
method.
\left( \frac{k}{n} \pm z_{\alpha/2} \sqrt{\frac{\frac{k}{n}(1-\frac{k}{n})}{n} +
\frac{z^2_{\alpha/2}}{4n^2}} \right)
/ \left( 1 + \frac{z^2_{\alpha/2}}{n} \right)
proportion_ci_agresti_coull()
: Calculates the Agresti-Coull
interval (created by Alan Agresti
and Brent Coull
) by
(for 95% CI) adding two successes and two failures to the data and then using the Wald formula to construct a CI.
\left( \frac{\tilde{p} + z^2_{\alpha/2}/2}{n + z^2_{\alpha/2}} \pm
z_{\alpha/2} \sqrt{\frac{\tilde{p}(1 - \tilde{p})}{n} +
\frac{z^2_{\alpha/2}}{4n^2}} \right)
proportion_ci_jeffreys()
: Calculates the Jeffreys interval, an equal-tailed interval based on the
non-informative Jeffreys prior for a binomial proportion.
\left( \text{Beta}\left(\frac{k}{2} + \frac{1}{2}, \frac{n - k}{2} + \frac{1}{2}\right)_\alpha,
\text{Beta}\left(\frac{k}{2} + \frac{1}{2}, \frac{n - k}{2} + \frac{1}{2}\right)_{1-\alpha} \right)
proportion_ci_strat_wilson()
: Calculates the stratified Wilson confidence
interval for unequal proportions as described in
Xin YA, Su XG. Stratified Wilson and Newcombe confidence intervals
for multiple binomial proportions. Statistics in Biopharmaceutical Research. 2010;2(3).
\frac{\hat{p}_j + \frac{z^2_{\alpha/2}}{2n_j} \pm
z_{\alpha/2} \sqrt{\frac{\hat{p}_j(1 - \hat{p}_j)}{n_j} +
\frac{z^2_{\alpha/2}}{4n_j^2}}}{1 + \frac{z^2_{\alpha/2}}{n_j}}
is_binary()
: Helper to determine if vector is binary (logical or 0/1)
x <- c(
TRUE, TRUE, TRUE, TRUE, TRUE,
FALSE, FALSE, FALSE, FALSE, FALSE
)
proportion_ci_wald(x, conf.level = 0.9)
proportion_ci_wilson(x, correct = TRUE)
proportion_ci_clopper_pearson(x)
proportion_ci_agresti_coull(x)
proportion_ci_jeffreys(x)
# Stratified Wilson confidence interval with unequal probabilities
set.seed(1)
rsp <- sample(c(TRUE, FALSE), 100, TRUE)
strata_data <- data.frame(
"f1" = sample(c("a", "b"), 100, TRUE),
"f2" = sample(c("x", "y", "z"), 100, TRUE),
stringsAsFactors = TRUE
)
strata <- interaction(strata_data)
n_strata <- ncol(table(rsp, strata)) # Number of strata
proportion_ci_strat_wilson(
x = rsp, strata = strata,
conf.level = 0.90
)
# Not automatic setting of weights
proportion_ci_strat_wilson(
x = rsp, strata = strata,
weights = rep(1 / n_strata, n_strata),
conf.level = 0.90
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.