Nothing
Code
p
Output
caretSDM
...............................
Class : input_sdm
-------- Occurrences --------
Species Names : Araucaria angustifolia
Number of presences : 420
Pseudoabsence methods :
Method to obtain PAs : random
Number of PA sets : 3
Number of PAs in each set : 420
-------- Predictors ---------
Number of Predictors : 2
Predictors Names : bio1, bio12
--------- Scenarios ---------
Number of Scenarios : 1
Scenarios Names : current
----------- Models ----------
Algorithms Names : naive_bayes kknn
Variables Names : bio1 bio12
Model Validation :
Method : cv
Number : 2
Metrics :
$`Araucaria angustifolia`
algo ROC Sens Spec ROCSD
1 kknn 0.6025314 0.9865079 0.03333333 0.14949089
2 naive_bayes 0.8488211 0.9706349 0.43055556 0.06122881
-------- Predictions --------
Ensembles :
Scenarios : current
Methods : mean_occ_prob wmean_AUC committee_avg
Thresholds :
Method : threshold
Criteria : 0.5
Code
p$predictions
Output
caretSDM
.........................
Class : Predictions
Ensembles :
Methods : mean_occ_prob wmean_AUC committee_avg
Thresholds :
Method : threshold
Criteria : 0.5
Metrics :
$`Araucaria angustifolia`
algo ROC Sens Spec ROCSD SensSD
m1.2 kknn 0.5214286 0.9761905 0.06666667 0.03030458 0.033671751
m2.2 kknn 0.6622768 0.9952381 0.00000000 0.23622838 0.006734350
m3.2 kknn 0.6238889 0.9880952 0.03333333 0.18193970 0.003367175
m1.1 naive_bayes 0.8760020 0.9714286 0.42083333 0.05907989 0.026937401
m2.1 naive_bayes 0.8547569 0.9738095 0.45208333 0.02506441 0.016835876
m3.1 naive_bayes 0.8157044 0.9666667 0.41875000 0.09954212 0.090913729
SpecSD
m1.2 0.09428090
m2.2 0.00000000
m3.2 0.04714045
m1.1 0.15026019
m2.1 0.15026019
m3.1 0.07954951
Code
p
Output
caretSDM
...............................
Class : input_sdm
-------- Occurrences --------
Species Names : Araucaria angustifolia
Number of presences : 420
Pseudoabsence methods :
Method to obtain PAs : random
Number of PA sets : 3
Number of PAs in each set : 420
-------- Predictors ---------
Number of Predictors : 2
Predictors Names : bio1, bio12
--------- Scenarios ---------
Number of Scenarios : 1
Scenarios Names : current
----------- Models ----------
Algorithms Names : naive_bayes kknn
Variables Names : bio1 bio12
Model Validation :
Method : cv
Number : 2
Metrics :
$`Araucaria angustifolia`
algo ROC Sens Spec ROCSD
1 kknn 0.6025314 0.9865079 0.03333333 0.14949089
2 naive_bayes 0.8488211 0.9706349 0.43055556 0.06122881
-------- Predictions --------
Ensembles :
Scenarios : current
Methods : mean_occ_prob wmean_AUC committee_avg
Thresholds :
Method : threshold
Criteria : 0
Code
p$predictions
Output
caretSDM
.........................
Class : Predictions
Ensembles :
Methods : mean_occ_prob wmean_AUC committee_avg
Thresholds :
Method : threshold
Criteria : 0
Metrics :
$`Araucaria angustifolia`
algo ROC Sens Spec ROCSD SensSD
m1.2 kknn 0.5214286 0.9761905 0.06666667 0.03030458 0.033671751
m2.2 kknn 0.6622768 0.9952381 0.00000000 0.23622838 0.006734350
m3.2 kknn 0.6238889 0.9880952 0.03333333 0.18193970 0.003367175
m1.1 naive_bayes 0.8760020 0.9714286 0.42083333 0.05907989 0.026937401
m2.1 naive_bayes 0.8547569 0.9738095 0.45208333 0.02506441 0.016835876
m3.1 naive_bayes 0.8157044 0.9666667 0.41875000 0.09954212 0.090913729
SpecSD
m1.2 0.09428090
m2.2 0.00000000
m3.2 0.04714045
m1.1 0.15026019
m2.1 0.15026019
m3.1 0.07954951
Code
p
Output
caretSDM
...............................
Class : input_sdm
-------- Occurrences --------
Species Names : Araucaria angustifolia
Number of presences : 420
Pseudoabsence methods :
Method to obtain PAs : random
Number of PA sets : 3
Number of PAs in each set : 420
-------- Predictors ---------
Number of Predictors : 2
Predictors Names : bio1, bio12
--------- Scenarios ---------
Number of Scenarios : 1
Scenarios Names : current
----------- Models ----------
Algorithms Names : naive_bayes kknn
Variables Names : bio1 bio12
Model Validation :
Method : cv
Number : 2
Metrics :
$`Araucaria angustifolia`
algo ROC Sens Spec ROCSD
1 kknn 0.6025314 0.9865079 0.03333333 0.14949089
2 naive_bayes 0.8488211 0.9706349 0.43055556 0.06122881
-------- Predictions --------
Ensembles :
Scenarios : current
Methods : mean_occ_prob wmean_AUC committee_avg
Thresholds :
Method : function (x, ...) UseMethod("mean")
Criteria : function (x, ...) UseMethod("mean")
Code
p$predictions
Output
caretSDM
.........................
Class : Predictions
Ensembles :
Methods : mean_occ_prob wmean_AUC committee_avg
Thresholds :
Method : function (x, ...) UseMethod("mean")
Criteria : function (x, ...) UseMethod("mean")
Metrics :
$`Araucaria angustifolia`
algo ROC Sens Spec ROCSD SensSD SpecSD
m1.1 naive_bayes 0.8760020 0.9714286 0.4208333 0.05907989 0.02693740 0.15026019
m2.1 naive_bayes 0.8547569 0.9738095 0.4520833 0.02506441 0.01683588 0.15026019
m3.1 naive_bayes 0.8157044 0.9666667 0.4187500 0.09954212 0.09091373 0.07954951
Code
p1
Output
caretSDM
.......................
Class : occurrences
Species Names : Araucaria angustifolia Salminus brasiliensis
Number of presences : 420 46
========================================
Data:
Simple feature collection with 6 features and 2 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: -5263273 ymin: -3156734 xmax: -5002956 ymax: -2830253
Projected CRS: WGS 84 / NSIDC EASE-Grid 2.0 Global
cell_id species geometry
1 17 Salminus brasiliensis POINT (-5002956 -3034581)
2 16 Salminus brasiliensis POINT (-5123570 -3049429)
3 2 Salminus brasiliensis POINT (-5138591 -2830253)
4 22 Salminus brasiliensis POINT (-5263273 -3143263)
5 23 Salminus brasiliensis POINT (-5172118 -3156734)
6 23 Salminus brasiliensis POINT (-5172118 -3156734)
Code
p2
Output
caretSDM
...........................
Class : sdm_area
Extent : -5301744 -3295037 -4601744 -2795037 (xmin, xmax, ymin, ymax)
CRS : WGS 84 / NSIDC EASE-
Resolution : (1e+05, 1e+05) (x, y)
Number of Predictors : 2
Predictors Names : bio1, bio12
Code
p3
Output
caretSDM
...........................
Class : sdm_area
Extent : -5301744 -3295037 -4601744 -2795037 (xmin, xmax, ymin, ymax)
CRS : WGS 84 / NSIDC EASE-
Resolution : (1e+05, 1e+05) (x, y)
Number of Predictors : 2
Predictors Names : bio1, bio12
Code
p4
Output
caretSDM
.........................
Class : Models
Algorithms Names : naive_bayes
Variables Names : bio1 bio12
Model Validation :
Method : boot
Number : 1
Metrics :
$`Salminus brasiliensis`
algo ROC TSS Sensitivity Specificity Pos Pred Value
m1.1 naive_bayes 0.5666667 0.07222222 0.9 0.222 0.708
m2.1 naive_bayes 0.6269841 0.44444444 1.0 0.444 0.737
Neg Pred Value Precision Recall F1 Prevalence Detection Rate
m1.1 0.4 0.708 0.9 0.783 0.690 0.621
m2.1 1.0 0.737 1.0 0.848 0.609 0.609
Detection Prevalence Balanced Accuracy Accuracy Kappa AccuracyLower
m1.1 0.897 0.536 0.655 0.082 0.457
m2.1 0.913 0.722 0.783 0.493 0.563
AccuracyUpper AccuracyNull AccuracyPValue McnemarPValue Positive Negative
m1.1 0.821 0.690 0.732 0.343 20 9
m2.1 0.925 0.609 0.264 0.074 14 9
True Positive False Positive True Negative False Negative ROCSD TSSSD
m1.1 18 3 2 8 NA NA
m2.1 14 0 4 7 NA NA
SensitivitySD SpecificitySD Pos Pred ValueSD Neg Pred ValueSD PrecisionSD
m1.1 NA NA NA NA NA
m2.1 NA NA NA NA NA
RecallSD F1SD PrevalenceSD Detection RateSD Detection PrevalenceSD
m1.1 NA NA NA NA NA
m2.1 NA NA NA NA NA
Balanced AccuracySD AccuracySD KappaSD AccuracyLowerSD AccuracyUpperSD
m1.1 NA NA NA NA NA
m2.1 NA NA NA NA NA
AccuracyNullSD AccuracyPValueSD McnemarPValueSD PositiveSD NegativeSD
m1.1 NA NA NA NA NA
m2.1 NA NA NA NA NA
True PositiveSD False PositiveSD True NegativeSD False NegativeSD
m1.1 NA NA NA NA
m2.1 NA NA NA NA
$`Araucaria angustifolia`
algo ROC TSS Sensitivity Specificity Pos Pred Value
m1.1 naive_bayes 0.8763975 0.4937888 0.994 0.500 0.970
m2.1 naive_bayes 0.8222934 0.5106838 0.955 0.556 0.974
Neg Pred Value Precision Recall F1 Prevalence Detection Rate
m1.1 0.833 0.970 0.994 0.982 0.942 0.936
m2.1 0.417 0.974 0.955 0.964 0.945 0.903
Detection Prevalence Balanced Accuracy Accuracy Kappa AccuracyLower
m1.1 0.965 0.747 0.965 0.608 0.925
m2.1 0.933 0.755 0.933 0.441 0.884
AccuracyUpper AccuracyNull AccuracyPValue McnemarPValue Positive Negative
m1.1 0.987 0.942 0.326 0.724 161 10
m2.1 0.966 0.945 0.882 0.773 156 9
True Positive False Positive True Negative False Negative ROCSD TSSSD
m1.1 160 3 5 5 NA NA
m2.1 149 7 5 5 NA NA
SensitivitySD SpecificitySD Pos Pred ValueSD Neg Pred ValueSD PrecisionSD
m1.1 NA NA NA NA NA
m2.1 NA NA NA NA NA
RecallSD F1SD PrevalenceSD Detection RateSD Detection PrevalenceSD
m1.1 NA NA NA NA NA
m2.1 NA NA NA NA NA
Balanced AccuracySD AccuracySD KappaSD AccuracyLowerSD AccuracyUpperSD
m1.1 NA NA NA NA NA
m2.1 NA NA NA NA NA
AccuracyNullSD AccuracyPValueSD McnemarPValueSD PositiveSD NegativeSD
m1.1 NA NA NA NA NA
m2.1 NA NA NA NA NA
True PositiveSD False PositiveSD True NegativeSD False NegativeSD
m1.1 NA NA NA NA
m2.1 NA NA NA NA
Code
p5
Output
caretSDM
.........................
Class : Predictions
Ensembles :
Methods : mean_occ_prob wmean_AUC committee_avg
Thresholds :
Method : threshold
Criteria : 0.5 0.6
Metrics :
$`Salminus brasiliensis`
algo ROC TSS Sensitivity Specificity Pos Pred Value
m1.1 naive_bayes 0.5666667 0.07222222 0.9 0.222 0.708
m2.1 naive_bayes 0.6269841 0.44444444 1.0 0.444 0.737
Neg Pred Value Precision Recall F1 Prevalence Detection Rate
m1.1 0.4 0.708 0.9 0.783 0.690 0.621
m2.1 1.0 0.737 1.0 0.848 0.609 0.609
Detection Prevalence Balanced Accuracy Accuracy Kappa AccuracyLower
m1.1 0.897 0.536 0.655 0.082 0.457
m2.1 0.913 0.722 0.783 0.493 0.563
AccuracyUpper AccuracyNull AccuracyPValue McnemarPValue Positive Negative
m1.1 0.821 0.690 0.732 0.343 20 9
m2.1 0.925 0.609 0.264 0.074 14 9
True Positive False Positive True Negative False Negative ROCSD TSSSD
m1.1 18 3 2 8 NA NA
m2.1 14 0 4 7 NA NA
SensitivitySD SpecificitySD Pos Pred ValueSD Neg Pred ValueSD PrecisionSD
m1.1 NA NA NA NA NA
m2.1 NA NA NA NA NA
RecallSD F1SD PrevalenceSD Detection RateSD Detection PrevalenceSD
m1.1 NA NA NA NA NA
m2.1 NA NA NA NA NA
Balanced AccuracySD AccuracySD KappaSD AccuracyLowerSD AccuracyUpperSD
m1.1 NA NA NA NA NA
m2.1 NA NA NA NA NA
AccuracyNullSD AccuracyPValueSD McnemarPValueSD PositiveSD NegativeSD
m1.1 NA NA NA NA NA
m2.1 NA NA NA NA NA
True PositiveSD False PositiveSD True NegativeSD False NegativeSD
m1.1 NA NA NA NA
m2.1 NA NA NA NA
$`Araucaria angustifolia`
algo ROC TSS Sensitivity Specificity Pos Pred Value
m1.1 naive_bayes 0.8763975 0.4937888 0.994 0.500 0.970
m2.1 naive_bayes 0.8222934 0.5106838 0.955 0.556 0.974
Neg Pred Value Precision Recall F1 Prevalence Detection Rate
m1.1 0.833 0.970 0.994 0.982 0.942 0.936
m2.1 0.417 0.974 0.955 0.964 0.945 0.903
Detection Prevalence Balanced Accuracy Accuracy Kappa AccuracyLower
m1.1 0.965 0.747 0.965 0.608 0.925
m2.1 0.933 0.755 0.933 0.441 0.884
AccuracyUpper AccuracyNull AccuracyPValue McnemarPValue Positive Negative
m1.1 0.987 0.942 0.326 0.724 161 10
m2.1 0.966 0.945 0.882 0.773 156 9
True Positive False Positive True Negative False Negative ROCSD TSSSD
m1.1 160 3 5 5 NA NA
m2.1 149 7 5 5 NA NA
SensitivitySD SpecificitySD Pos Pred ValueSD Neg Pred ValueSD PrecisionSD
m1.1 NA NA NA NA NA
m2.1 NA NA NA NA NA
RecallSD F1SD PrevalenceSD Detection RateSD Detection PrevalenceSD
m1.1 NA NA NA NA NA
m2.1 NA NA NA NA NA
Balanced AccuracySD AccuracySD KappaSD AccuracyLowerSD AccuracyUpperSD
m1.1 NA NA NA NA NA
m2.1 NA NA NA NA NA
AccuracyNullSD AccuracyPValueSD McnemarPValueSD PositiveSD NegativeSD
m1.1 NA NA NA NA NA
m2.1 NA NA NA NA NA
True PositiveSD False PositiveSD True NegativeSD False NegativeSD
m1.1 NA NA NA NA
m2.1 NA NA NA NA
Code
p6
Output
caretSDM
.........................
Class : Predictions
Ensembles :
Methods : mean_occ_prob wmean_AUC committee_avg
Thresholds :
Method : threshold
Criteria : 0.5
Metrics :
$`Salminus brasiliensis`
algo ROC TSS Sensitivity Specificity Pos Pred Value
m1.1 naive_bayes 0.5666667 0.07222222 0.9 0.222 0.708
m2.1 naive_bayes 0.6269841 0.44444444 1.0 0.444 0.737
Neg Pred Value Precision Recall F1 Prevalence Detection Rate
m1.1 0.4 0.708 0.9 0.783 0.690 0.621
m2.1 1.0 0.737 1.0 0.848 0.609 0.609
Detection Prevalence Balanced Accuracy Accuracy Kappa AccuracyLower
m1.1 0.897 0.536 0.655 0.082 0.457
m2.1 0.913 0.722 0.783 0.493 0.563
AccuracyUpper AccuracyNull AccuracyPValue McnemarPValue Positive Negative
m1.1 0.821 0.690 0.732 0.343 20 9
m2.1 0.925 0.609 0.264 0.074 14 9
True Positive False Positive True Negative False Negative ROCSD TSSSD
m1.1 18 3 2 8 NA NA
m2.1 14 0 4 7 NA NA
SensitivitySD SpecificitySD Pos Pred ValueSD Neg Pred ValueSD PrecisionSD
m1.1 NA NA NA NA NA
m2.1 NA NA NA NA NA
RecallSD F1SD PrevalenceSD Detection RateSD Detection PrevalenceSD
m1.1 NA NA NA NA NA
m2.1 NA NA NA NA NA
Balanced AccuracySD AccuracySD KappaSD AccuracyLowerSD AccuracyUpperSD
m1.1 NA NA NA NA NA
m2.1 NA NA NA NA NA
AccuracyNullSD AccuracyPValueSD McnemarPValueSD PositiveSD NegativeSD
m1.1 NA NA NA NA NA
m2.1 NA NA NA NA NA
True PositiveSD False PositiveSD True NegativeSD False NegativeSD
m1.1 NA NA NA NA
m2.1 NA NA NA NA
Code
p7
Output
caretSDM
.........................
Class : Predictions
Ensembles :
Methods : mean_occ_prob wmean_AUC committee_avg
Thresholds :
Method : threshold
Criteria : 0.6
Metrics :
$`Araucaria angustifolia`
algo ROC TSS Sensitivity Specificity Pos Pred Value
m1.1 naive_bayes 0.8763975 0.4937888 0.994 0.500 0.970
m2.1 naive_bayes 0.8222934 0.5106838 0.955 0.556 0.974
Neg Pred Value Precision Recall F1 Prevalence Detection Rate
m1.1 0.833 0.970 0.994 0.982 0.942 0.936
m2.1 0.417 0.974 0.955 0.964 0.945 0.903
Detection Prevalence Balanced Accuracy Accuracy Kappa AccuracyLower
m1.1 0.965 0.747 0.965 0.608 0.925
m2.1 0.933 0.755 0.933 0.441 0.884
AccuracyUpper AccuracyNull AccuracyPValue McnemarPValue Positive Negative
m1.1 0.987 0.942 0.326 0.724 161 10
m2.1 0.966 0.945 0.882 0.773 156 9
True Positive False Positive True Negative False Negative ROCSD TSSSD
m1.1 160 3 5 5 NA NA
m2.1 149 7 5 5 NA NA
SensitivitySD SpecificitySD Pos Pred ValueSD Neg Pred ValueSD PrecisionSD
m1.1 NA NA NA NA NA
m2.1 NA NA NA NA NA
RecallSD F1SD PrevalenceSD Detection RateSD Detection PrevalenceSD
m1.1 NA NA NA NA NA
m2.1 NA NA NA NA NA
Balanced AccuracySD AccuracySD KappaSD AccuracyLowerSD AccuracyUpperSD
m1.1 NA NA NA NA NA
m2.1 NA NA NA NA NA
AccuracyNullSD AccuracyPValueSD McnemarPValueSD PositiveSD NegativeSD
m1.1 NA NA NA NA NA
m2.1 NA NA NA NA NA
True PositiveSD False PositiveSD True NegativeSD False NegativeSD
m1.1 NA NA NA NA
m2.1 NA NA NA NA
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.