tests/testthat/_snaps/train_sdm.md

train_sdm

Code
  i2
Output
              caretSDM           
  ...............................
  Class                         : input_sdm
  --------  Occurrences  --------
  Species Names                 : Araucaria angustifolia 
  Number of presences           : 420 
  Pseudoabsence methods         :
      Method to obtain PAs      : random 
      Number of PA sets         : 3 
      Number of PAs in each set : 420 
  --------  Predictors  ---------
  Number of Predictors          : 2 
  Predictors Names              : bio1, bio12 
  ---------  Scenarios  ---------
  Number of Scenarios           : 1 
  Scenarios Names               : current 
  -----------  Models  ----------
  Algorithms Names              : kknn naive_bayes 
  Variables Names               : bio1 bio12 
  Model Validation              :
      Method                    : cv 
      Number                    : 2 
      Metrics                   :
  $`Araucaria angustifolia`
           algo       ROC      Sens      Spec      ROCSD
  1        kknn 0.6605192 0.9920635 0.1097222 0.08681466
  2 naive_bayes 0.8402910 0.9706349 0.3631944 0.11121967

train_sdm - pca

Code
  i2
Output
              caretSDM           
  ...............................
  Class                         : input_sdm
  --------  Occurrences  --------
  Species Names                 : Araucaria angustifolia 
  Number of presences           : 420 
  Pseudoabsence methods         :
      Method to obtain PAs      : random 
      Number of PA sets         : 3 
      Number of PAs in each set : 420 
  --------  Predictors  ---------
  Number of Predictors          : 4 
  Predictors Names              : bio1, bio12, PC1, PC2 
  PCA-transformed variables     : DONE 
  Cummulative proportion ( 0.99 ) : PC1 
  ---------  Scenarios  ---------
  Number of Scenarios           : 1 
  Scenarios Names               : current 
  -----------  Models  ----------
  Algorithms Names              : kknn naive_bayes 
  Variables Names               : PC1 
  Model Validation              :
      Method                    : cv 
      Number                    : 2 
      Metrics                   :
  $`Araucaria angustifolia`
           algo       ROC      Sens       Spec     ROCSD
  1        kknn 0.5741815 0.9801587 0.08819444 0.0710965
  2 naive_bayes 0.8392427 0.9857143 0.15208333 0.1099336

train_sdm - vif

Code
  i2
Output
              caretSDM           
  ...............................
  Class                         : input_sdm
  --------  Occurrences  --------
  Species Names                 : Araucaria angustifolia 
  Number of presences           : 420 
  Pseudoabsence methods         :
      Method to obtain PAs      : random 
      Number of PA sets         : 3 
      Number of PAs in each set : 420 
  --------  Predictors  ---------
  Number of Predictors          : 2 
  Predictors Names              : bio1, bio12 
  Area (VIF)                    : all
  Threshold                     : 0.5
  Selected Variables (VIF)      : bio1, bio12 
  ---------  Scenarios  ---------
  Number of Scenarios           : 1 
  Scenarios Names               : current 
  -----------  Models  ----------
  Algorithms Names              : naive_bayes kknn 
  Variables Names               : bio1 bio12 
  Model Validation              :
      Method                    : cv 
      Number                    : 2 
      Metrics                   :
  $`Araucaria angustifolia`
           algo       ROC      Sens      Spec      ROCSD
  1        kknn 0.6314964 0.9865079 0.1381944 0.06344787
  2 naive_bayes 0.8625942 0.9666667 0.3645833 0.04378965

train_sdm - change ctrl

Code
  i2
Output
              caretSDM           
  ...............................
  Class                         : input_sdm
  --------  Occurrences  --------
  Species Names                 : Araucaria angustifolia 
  Number of presences           : 420 
  Pseudoabsence methods         :
      Method to obtain PAs      : random 
      Number of PA sets         : 3 
      Number of PAs in each set : 420 
  --------  Predictors  ---------
  Number of Predictors          : 4 
  Predictors Names              : bio1, bio12, PC1, PC2 
  PCA-transformed variables     : DONE 
  Cummulative proportion ( 0.99 ) : PC1 
  ---------  Scenarios  ---------
  Number of Scenarios           : 1 
  Scenarios Names               : current 
  -----------  Models  ----------
  Algorithms Names              : kknn naive_bayes 
  Variables Names               : PC1 
  Model Validation              :
      Method                    : boot 
      Number                    : 10 
      Metrics                   :
  $`Araucaria angustifolia`
           algo       ROC      Sens       Spec      ROCSD
  1        kknn 0.5646017 0.9898871 0.07271169 0.06067877
  2 naive_bayes 0.8402030 0.9966436 0.14952596 0.10851423

train_sdm - selecting vars

Code
  i2
Output
              caretSDM           
  ...............................
  Class                         : input_sdm
  --------  Occurrences  --------
  Species Names                 : Araucaria angustifolia 
  Number of presences           : 420 
  Pseudoabsence methods         :
      Method to obtain PAs      : random 
      Number of PA sets         : 3 
      Number of PAs in each set : 420 
  --------  Predictors  ---------
  Number of Predictors          : 2 
  Predictors Names              : bio1, bio12 
  ---------  Scenarios  ---------
  Number of Scenarios           : 1 
  Scenarios Names               : current 
  -----------  Models  ----------
  Algorithms Names              : naive_bayes kknn 
  Variables Names               : bio1 bio12 
  Model Validation              :
      Method                    : cv 
      Number                    : 2 
      Metrics                   :
  $`Araucaria angustifolia`
           algo       ROC      Sens       Spec      ROCSD
  1        kknn 0.5642758 0.9785714 0.05347222 0.08865492
  2 naive_bayes 0.8495552 0.9690476 0.40902778 0.04172257

train_sdm - ESM

Code
  i2
Output
              caretSDM           
  ...............................
  Class                         : input_sdm
  --------  Occurrences  --------
  Species Names                 : Araucaria angustifolia 
  Number of presences           : 420 
  Pseudoabsence methods         :
      Method to obtain PAs      : random 
      Number of PA sets         : 3 
      Number of PAs in each set : 420 
  Ensemble of Small Models (ESM): TRUE
      Number of Records         : 20 
  --------  Predictors  ---------
  Number of Predictors          : 3 
  Predictors Names              : bio1, bio4, bio12 
  ---------  Scenarios  ---------
  Number of Scenarios           : 1 
  Scenarios Names               : current 
  -----------  Models  ----------
  Algorithms Names              : naive_bayes kknn 
  Variables Names               : bio1 bio4 bio12 
  Model Validation              :
      Method                    : cv 
      Number                    : 2 
      Metrics                   :
  $`Araucaria angustifolia`
           algo       ROC      Sens       Spec      ROCSD
  1        kknn 0.5662136 0.9883598 0.05787037 0.06801226
  2 naive_bayes 0.8406983 0.9748677 0.43356481 0.08100005

mahal.dist train

Code
  i2
Output
              caretSDM           
  ...............................
  Class                         : input_sdm
  --------  Occurrences  --------
  Species Names                 : Araucaria angustifolia 
  Number of presences           : 420 
  Pseudoabsence methods         :
      Method to obtain PAs      : bioclim 
      Number of PA sets         : 3 
      Number of PAs in each set : 420 
  --------  Predictors  ---------
  Number of Predictors          : 7 
  Predictors Names              : GID0, CODIGOIB1, NOMEUF2, SIGLAUF3, bio1, bio4, bio12 
  -----------  Models  ----------
  Algorithms Names              : mahal.custom 
  Variables Names               : bio1 bio4 bio12 
  Model Validation              :
      Method                    : cv 
      Number                    : 3 
      Metrics                   :
  $`Araucaria angustifolia`
            algo       ROC       TSS Sensitivity Specificity
  1 mahal.custom 0.9886484 0.8152958   0.8254444           1

train_sdm - one species ESM

Code
  i1
Output
              caretSDM           
  ...............................
  Class                         : input_sdm
  --------  Occurrences  --------
  Species Names                 : Salminus brasiliensis Araucaria angustifolia 
  Number of presences           : 82 21 
  Pseudoabsence methods         :
      Method to obtain PAs      : bioclim 
      Number of PA sets         : 10 
      Number of PAs in each set : 82 21 
  Data Cleaning                 : NAs, Capitals, Centroids, Geographically Duplicated, Identical Lat/Long, Institutions, Invalid, Non-terrestrial, Duplicated Cell (grid) 
  Ensemble of Small Models (ESM): TRUE
      Number of Records         : 30 
  --------  Predictors  ---------
  Number of Predictors          : 3 
  Predictors Names              : bio1, bio4, bio12 
  ---------  Scenarios  ---------
  Number of Scenarios           : 1 
  Scenarios Names               : current 
  -----------  Models  ----------
  Algorithms Names              : mahal.custom 
  Variables Names               : bio1 bio4 bio12 
  Model Validation              :
      Method                    : repeatedcv 
      Number                    : 4 
      Metrics                   :
  $`Salminus brasiliensis`
            algo       ROC       TSS Sensitivity Specificity
  1 mahal.custom 0.6988333 0.3477778      0.8586   0.9541667

  $`Araucaria angustifolia`
            algo       ROC       TSS Sensitivity Specificity
  1 mahal.custom 0.9612472 0.7656548     0.95015           1
Code
  i2
Output
              caretSDM           
  ...............................
  Class                         : input_sdm
  --------  Occurrences  --------
  Species Names                 : Salminus brasiliensis Araucaria angustifolia 
  Number of presences           : 82 21 
  Pseudoabsence methods         :
      Method to obtain PAs      : bioclim 
      Number of PA sets         : 10 
      Number of PAs in each set : 82 21 
  Data Cleaning                 : NAs, Capitals, Centroids, Geographically Duplicated, Identical Lat/Long, Institutions, Invalid, Non-terrestrial, Duplicated Cell (grid) 
  Ensemble of Small Models (ESM): TRUE
      Number of Records         : 30 
  --------  Predictors  ---------
  Number of Predictors          : 3 
  Predictors Names              : bio1, bio4, bio12 
  ---------  Scenarios  ---------
  Number of Scenarios           : 1 
  Scenarios Names               : current 
  -----------  Models  ----------
  Algorithms Names              : kknn 
  Variables Names               : bio1 bio4 bio12 
  Model Validation              :
      Method                    : repeatedcv 
      Number                    : 4 
      Metrics                   :
  $`Salminus brasiliensis`
    algo       ROC       TSS Sensitivity Specificity
  1 kknn 0.9059954 0.7541667   0.8386083   0.9205417

  $`Araucaria angustifolia`
    algo       ROC       TSS Sensitivity Specificity
  1 kknn 0.9562599 0.8770238       0.977    0.899875
Code
  i1$models
Output
           caretSDM        
  .........................
  Class                   : Models
  Algorithms Names        : mahal.custom 
  Variables Names         : bio1 bio4 bio12 
  Model Validation        :
           Method          : repeatedcv 
           Number          : 4 
           Metrics         :
  $`Salminus brasiliensis`
                 algo       ROC       TSS Sensitivity Specificity Pos Pred Value
  m1.11  mahal.custom 0.6950000 0.4166667     0.85000     1.00000      1.0000000
  m1.21  mahal.custom 0.7083333 0.3750000     0.85000     1.00000      1.0000000
  m1.31  mahal.custom 0.7166667 0.2750000     0.90000     0.90000      0.8750000
  m2.11  mahal.custom 0.6072222 0.3916667     0.85825     1.00000      1.0000000
  m2.21  mahal.custom 0.7058333 0.3333333     0.90000     0.95000      0.9333333
  m2.31  mahal.custom 0.6833333 0.2833333     0.90825     0.90000      0.8750000
  m3.11  mahal.custom 0.7966667 0.3166667     0.90000     0.85000      0.8750000
  m3.21  mahal.custom 0.7713889 0.4333333     0.86675     1.00000      1.0000000
  m3.31  mahal.custom 0.7666667 0.3916667     0.86675     1.00000      1.0000000
  m4.11  mahal.custom 0.6844444 0.2833333     0.90000     0.95000      0.8750000
  m4.21  mahal.custom 0.7100000 0.3333333     0.90000     1.00000      1.0000000
  m4.31  mahal.custom 0.7483333 0.3750000     0.90000     0.95000      0.9375000
  m5.11  mahal.custom 0.7866667 0.4250000     0.90825     1.00000      1.0000000
  m5.21  mahal.custom 0.7836111 0.4333333     0.90000     1.00000      1.0000000
  m5.31  mahal.custom 0.7250000 0.2916667     0.75825     0.95000      0.9167500
  m6.11  mahal.custom 0.6633333 0.2500000     0.90825     0.90000      0.7917500
  m6.21  mahal.custom 0.6158333 0.1916667     0.75825     0.90000      0.8666667
  m6.31  mahal.custom 0.7033333 0.4166667     0.80000     0.95000      0.8750000
  m7.11  mahal.custom 0.6800000 0.3000000     0.73325     0.95825      0.9167500
  m7.21  mahal.custom 0.7150000 0.4416667     0.86675     1.00000      1.0000000
  m7.31  mahal.custom 0.6266667 0.3583333     0.90825     1.00000      1.0000000
  m8.11  mahal.custom 0.6450000 0.3750000     0.90000     1.00000      1.0000000
  m8.21  mahal.custom 0.6650000 0.2333333     0.80825     0.90000      0.9000000
  m8.31  mahal.custom 0.5916667 0.4500000     0.81675     1.00000      1.0000000
  m9.11  mahal.custom 0.7283333 0.2916667     0.90825     0.95000      0.9167500
  m9.21  mahal.custom 0.6800000 0.3833333     0.76675     0.95000      0.9375000
  m9.31  mahal.custom 0.6933333 0.4083333     0.81675     0.91675      0.8332500
  m10.11 mahal.custom 0.6483333 0.3916667     0.85000     1.00000      1.0000000
  m10.21 mahal.custom 0.7533333 0.2750000     0.90000     0.85000      0.7556667
  m10.31 mahal.custom 0.6666667 0.3083333     0.85000     0.90000      0.7776667
         Neg Pred Value Precision  Recall        F1 Prevalence Detection Rate
  m1.11       0.7082500 1.0000000 0.85000 0.7070000        0.5        0.42950
  m1.21       0.7917500 1.0000000 0.85000 0.6690000        0.5        0.42500
  m1.31       0.6250000 0.8750000 0.90000 0.7030000        0.5        0.45000
  m2.11       0.6480000 1.0000000 0.85825 0.6775000        0.5        0.42925
  m2.21       0.8666667 0.9333333 0.90000 0.6827500        0.5        0.45000
  m2.31       0.5915000 0.8750000 0.90825 0.6995000        0.5        0.45250
  m3.11       0.8667500 0.8750000 0.90000 0.7270000        0.5        0.45225
  m3.21       0.8335000 1.0000000 0.86675 0.7180000        0.5        0.43325
  m3.31       0.8250000 1.0000000 0.86675 0.7245000        0.5        0.42975
  m4.11       0.7000000 0.8750000 0.90000 0.7087500        0.5        0.45000
  m4.21       0.6667500 1.0000000 0.90000 0.7082500        0.5        0.45225
  m4.31       0.7917500 0.9375000 0.90000 0.7002500        0.5        0.45000
  m5.11       0.8667500 1.0000000 0.90825 0.7355000        0.5        0.45250
  m5.21       0.8750000 1.0000000 0.90000 0.7322500        0.5        0.45000
  m5.31       0.6832500 0.9167500 0.75825 0.6617500        0.5        0.37750
  m6.11       0.8335000 0.7917500 0.90825 0.7042500        0.5        0.45250
  m6.21       0.7000000 0.8666667 0.75825 0.6480000        0.5        0.37925
  m6.31       0.7500000 0.8750000 0.80000 0.6510000        0.5        0.40000
  m7.11       0.7750000 0.9167500 0.73325 0.6180000        0.5        0.36375
  m7.21       0.7750000 1.0000000 0.86675 0.6912500        0.5        0.42975
  m7.31       0.8542500 1.0000000 0.90825 0.8295000        0.5        0.45475
  m8.11       0.7917500 1.0000000 0.90000 0.6880000        0.5        0.45225
  m8.21       0.7085000 0.9000000 0.80825 0.6745000        0.5        0.40700
  m8.31       0.6657500 1.0000000 0.81675 0.7366667        0.5        0.40475
  m9.11       0.8250000 0.9167500 0.90825 0.7030000        0.5        0.45425
  m9.21       0.7260000 0.9375000 0.76675 0.6107500        0.5        0.38650
  m9.31       0.7500000 0.8332500 0.81675 0.6495000        0.5        0.40925
  m10.11      0.8125000 1.0000000 0.85000 0.6755000        0.5        0.42500
  m10.21      0.8542500 0.7556667 0.90000 0.7120000        0.5        0.45225
  m10.31      0.8750000 0.7776667 0.85000 0.6877500        0.5        0.43175
         Detection Prevalence Balanced Accuracy Accuracy   Kappa AccuracyLower
  m1.11               0.76125           0.70825  0.71125 0.41650       0.37575
  m1.21               0.75675           0.68750  0.69075 0.37250       0.35100
  m1.31               0.78850           0.63750  0.64075 0.27250       0.30825
  m2.11               0.78325           0.69575  0.69575 0.39175       0.36575
  m2.21               0.80825           0.66675  0.66675 0.33325       0.33200
  m2.31               0.80900           0.64175  0.64550 0.28900       0.31575
  m3.11               0.74075           0.65825  0.66350 0.32000       0.32600
  m3.21               0.70000           0.71675  0.71675 0.43325       0.37850
  m3.31               0.69075           0.69575  0.69525 0.39200       0.36125
  m4.11               0.78325           0.64175  0.64175 0.28325       0.30800
  m4.21               0.78175           0.66675  0.66575 0.33325       0.32700
  m4.31               0.78325           0.68750  0.68750 0.37500       0.34650
  m5.11               0.73625           0.71250  0.70900 0.42250       0.37525
  m5.21               0.72925           0.71675  0.71675 0.43325       0.37225
  m5.31               0.64075           0.64575  0.64075 0.29375       0.31000
  m6.11               0.78400           0.62500  0.62050 0.24875       0.29175
  m6.21               0.66675           0.59575  0.59575 0.19175       0.28050
  m6.31               0.70900           0.70825  0.70675 0.41475       0.37950
  m7.11               0.62950           0.65000  0.64525 0.29875       0.31200
  m7.21               0.74300           0.72075  0.71350 0.44200       0.37925
  m7.31               0.76575           0.67925  0.68175 0.36025       0.36075
  m8.11               0.80900           0.68750  0.68625 0.37425       0.34900
  m8.21               0.69550           0.61675  0.61800 0.23150       0.28775
  m8.31               0.73850           0.72500  0.71825 0.45525       0.38800
  m9.11               0.79575           0.64575  0.64575 0.29175       0.31125
  m9.21               0.72275           0.69175  0.69075 0.38325       0.34850
  m9.31               0.74300           0.70400  0.70000 0.40400       0.38425
  m10.11              0.73625           0.69575  0.68625 0.38850       0.37100
  m10.21              0.76350           0.63750  0.64075 0.27775       0.30550
  m10.31              0.72275           0.65425  0.66350 0.30500       0.34675
         AccuracyUpper AccuracyNull AccuracyPValue McnemarPValue Positive
  m1.11        0.92625       0.5225        0.44900       0.38725     5.25
  m1.21        0.92100       0.5225        0.44250       0.47125     5.25
  m1.31        0.89425       0.5225        0.42375       0.40750     5.25
  m2.11        0.90825       0.5000        0.48650       0.45125     5.25
  m2.21        0.90550       0.5000        0.39275       0.36400     5.25
  m2.31        0.88975       0.5225        0.47100       0.38625     5.25
  m3.11        0.90900       0.5225        0.39200       0.49975     5.25
  m3.21        0.92725       0.5000        0.22875       0.52825     5.25
  m3.31        0.91350       0.5225        0.30900       0.59550     5.25
  m4.11        0.89500       0.5000        0.36350       0.37225     5.25
  m4.21        0.91050       0.5225        0.38750       0.36900     5.25
  m4.31        0.92225       0.5000        0.34150       0.40750     5.25
  m5.11        0.92350       0.5225        0.30050       0.47125     5.25
  m5.21        0.93550       0.5000        0.29825       0.58050     5.25
  m5.31        0.89150       0.5225        0.41275       0.70425     5.25
  m6.11        0.88375       0.5225        0.38875       0.38900     5.25
  m6.21        0.86800       0.5000        0.39275       0.68775     5.25
  m6.31        0.91650       0.5225        0.45350       0.59550     5.25
  m7.11        0.89425       0.5225        0.44775       0.43825     5.25
  m7.21        0.92425       0.5225        0.39200       0.43825     5.25
  m7.31        0.90025       0.5225        0.33000       0.40700     5.25
  m8.11        0.91825       0.5225        0.43875       0.30500     5.25
  m8.21        0.88450       0.5225        0.39125       0.55900     5.25
  m8.31        0.91825       0.5225        0.49900       0.46525     5.25
  m9.11        0.89475       0.5000        0.36250       0.40975     5.25
  m9.21        0.92425       0.5225        0.54825       0.48775     5.25
  m9.31        0.89350       0.5225        0.49700       0.51625     5.25
  m10.11       0.89475       0.5225        0.37075       0.43600     5.25
  m10.21       0.89675       0.5225        0.44000       0.45625     5.25
  m10.31       0.88600       0.5225        0.39625       0.56700     5.25
         Negative True Positive False Positive True Negative False Negative
  m1.11      5.25          4.50           3.00          5.25           3.50
  m1.21      5.25          4.50           3.25          5.25           3.50
  m1.31      5.25          4.75           3.25          4.75           3.50
  m2.11      5.25          4.50           3.25          5.25           3.75
  m2.21      5.25          4.75           3.25          5.00           3.75
  m2.31      5.25          4.75           3.25          4.75           3.75
  m3.11      5.25          4.75           3.25          4.50           3.00
  m3.21      5.25          4.50           3.00          5.25           2.75
  m3.31      5.25          4.50           3.25          5.25           2.75
  m4.11      5.25          4.75           3.50          5.00           3.50
  m4.21      5.25          4.75           3.50          5.25           3.50
  m4.31      5.25          4.75           3.00          5.00           3.50
  m5.11      5.25          4.75           3.00          5.25           3.00
  m5.21      5.25          4.75           3.00          5.25           3.00
  m5.31      5.25          4.00           3.50          5.00           2.75
  m6.11      5.25          4.75           3.50          4.75           3.50
  m6.21      5.25          4.00           3.75          4.75           3.00
  m6.31      5.25          4.25           2.75          5.00           3.25
  m7.11      5.25          3.75           3.50          5.00           2.75
  m7.21      5.25          4.50           3.00          5.25           3.25
  m7.31      5.25          4.75           3.25          5.25           3.25
  m8.11      5.25          4.75           3.25          5.25           3.75
  m8.21      5.25          4.25           3.50          4.75           3.00
  m8.31      5.25          4.25           3.00          5.25           3.50
  m9.11      5.25          4.75           3.50          5.00           3.50
  m9.21      5.25          4.00           3.00          5.00           3.50
  m9.31      5.25          4.25           2.75          4.75           3.50
  m10.11     5.25          4.50           3.25          5.25           3.25
  m10.21     5.25          4.75           3.50          4.50           3.25
  m10.31     5.25          4.50           3.00          4.75           3.00
              ROCSD     TSSSD SensitivitySD SpecificitySD Pos Pred ValueSD
  m1.11  0.19077813 0.3774917     0.3000926    0.20059640       0.15591237
  m1.21  0.10754844 0.2061553     0.2061553    0.09428105       0.04201091
  m1.31  0.25655842 0.3862210     0.1258306    0.27537853       0.25000000
  m2.11  0.37074666 0.5000000     0.3714910    0.34996035       0.19341320
  m2.21  0.12893797 0.2494438     0.3283122    0.25163913       0.11547005
  m2.31  0.09714441 0.4255715     0.1667001    0.32015621       0.25000000
  m3.11  0.05347204 0.2061553     0.2061553    0.30000000       0.25000000
  m3.21  0.11993954 0.2581989     0.2582420    0.13350000       0.03934463
  m3.31  0.18102588 0.2910708     0.2909850    0.25000000       0.11199107
  m4.11  0.20646346 0.3333333     0.1154701    0.33993468       0.25000000
  m4.21  0.12806248 0.3415650     0.1154701    0.25166115       0.13874437
  m4.31  0.06540472 0.1763834     0.1707825    0.10000000       0.12500000
  m5.11  0.14636332 0.2872281     0.2872281    0.25824197       0.11518789
  m5.21  0.15881603 0.3468109     0.2000000    0.26287941       0.14752034
  m5.31  0.08766519 0.3457413     0.2005964    0.26880399       0.16870586
  m6.11  0.15818414 0.2061553     0.1165000    0.11650000       0.24994449
  m6.21  0.24608603 0.4229526     0.2629428    0.28722813       0.23094011
  m6.31  0.20551651 0.3785939     0.3127655    0.10000000       0.25000000
  m7.11  0.15748016 0.2018434     0.3267347    0.25000000       0.16650000
  m7.21  0.17086924 0.2629956     0.2628794    0.20615528       0.07387828
  m7.31  0.24962194 0.4245913     0.4244670    0.12583057       0.03603124
  m8.11  0.12897028 0.2061553     0.2061553    0.12572026       0.09136192
  m8.21  0.17725270 0.1663887     0.1885619    0.20000000       0.20000000
  m8.31  0.42768542 0.4776486     0.3415650    0.28493669       0.13947760
  m9.11  0.09758187 0.2061553     0.2005964    0.23350000       0.16650000
  m9.21  0.09797959 0.1575272     0.2905551    0.23350000       0.12500000
  m9.31  0.26975984 0.4961892     0.3918404    0.16650000       0.33350000
  m10.11 0.29471267 0.4374802     0.4374230    0.12583057       0.15427573
  m10.21 0.09933110 0.1374369     0.2494439    0.19148542       0.21423430
  m10.31 0.28394053 0.4879094     0.3773666    0.28722813       0.38509263
         Neg Pred ValueSD PrecisionSD  RecallSD       F1SD PrevalenceSD
  m1.11         0.3437134  0.15591237 0.3000926 0.17275513   0.03674235
  m1.21         0.2499445  0.04201091 0.2061553 0.21942709   0.03674235
  m1.31         0.4787136  0.25000000 0.1258306 0.14594377   0.03674235
  m2.11         0.4787136  0.19341320 0.3714910 0.31575993   0.00000000
  m2.21         0.2309401  0.11547005 0.3283122 0.15678116   0.00000000
  m2.31         0.5773503  0.25000000 0.1667001 0.18681631   0.03674235
  m3.11         0.1631633  0.25000000 0.2061553 0.16529872   0.03674235
  m3.21         0.1922576  0.03934463 0.2582420 0.23294402   0.00000000
  m3.31         0.2362908  0.11199107 0.2909850 0.27597509   0.03674235
  m4.11         0.4760952  0.25000000 0.1154701 0.13488514   0.00000000
  m4.21         0.4714046  0.13874437 0.1154701 0.13710671   0.03674235
  m4.31         0.2499445  0.12500000 0.1707825 0.15763566   0.00000000
  m5.11         0.1631633  0.11518789 0.2872281 0.27243776   0.03674235
  m5.21         0.2500000  0.14752034 0.2000000 0.15093348   0.00000000
  m5.31         0.2849367  0.16870586 0.2005964 0.20967813   0.03674235
  m6.11         0.1922576  0.24994449 0.1165000 0.15238766   0.03674235
  m6.21         0.3188521  0.23094011 0.2629428 0.19362507   0.00000000
  m6.31         0.2886751  0.25000000 0.3127655 0.31160338   0.03674235
  m7.11         0.2629956  0.16650000 0.3267347 0.20967813   0.03674235
  m7.21         0.2629956  0.07387828 0.2628794 0.24635797   0.03674235
  m7.31         0.1716748  0.03603124 0.4244670 0.11242998   0.03674235
  m8.11         0.2499445  0.09136192 0.2061553 0.21942709   0.03674235
  m8.21         0.2096736  0.20000000 0.1885619 0.13176874   0.03674235
  m8.31         0.5000556  0.13947760 0.3415650 0.16686596   0.03674235
  m9.11         0.2362908  0.16650000 0.2005964 0.20967813   0.00000000
  m9.21         0.3309713  0.12500000 0.2905551 0.13000865   0.03674235
  m9.31         0.2886751  0.33350000 0.3918404 0.36530672   0.03674235
  m10.11        0.3750000  0.15427573 0.4374230 0.35941202   0.03674235
  m10.21        0.1716748  0.21423430 0.2494439 0.06271098   0.03674235
  m10.31        0.2500000  0.38509263 0.3773666 0.34389000   0.03674235
         Detection RateSD Detection PrevalenceSD Balanced AccuracySD AccuracySD
  m1.11        0.15988642             0.15988642          0.18887099 0.20149835
  m1.21        0.11088432             0.13505894          0.10307764 0.09033779
  m1.31        0.07502444             0.12972535          0.19311050 0.19420500
  m2.11        0.18584649             0.18584649          0.25000000 0.25000000
  m2.21        0.16413079             0.21665391          0.12472202 0.12472202
  m2.31        0.08230836             0.11816796          0.21269442 0.19754578
  m3.11        0.11088432             0.23789774          0.10307764 0.09386648
  m3.21        0.12905651             0.14142136          0.12905651 0.12905651
  m3.31        0.14569489             0.16781215          0.14562137 0.15058857
  m4.11        0.05773503             0.19145648          0.16670008 0.16670008
  m4.21        0.08446054             0.10144416          0.17078251 0.19127184
  m4.31        0.08539126             0.12500000          0.08825484 0.08825484
  m5.11        0.13150760             0.17262363          0.14361407 0.14615745
  m5.21        0.10000000             0.15670221          0.17346157 0.17346157
  m5.31        0.08948929             0.14595290          0.17302601 0.17135830
  m6.11        0.05219435             0.09342733          0.10322588 0.12311648
  m6.21        0.13155069             0.21879728          0.21151576 0.21151576
  m6.31        0.15242047             0.13012302          0.18922363 0.18922892
  m7.11        0.16165472             0.28075672          0.10095874 0.10974326
  m7.21        0.11257701             0.14984214          0.13161402 0.14941776
  m7.31        0.22290357             0.22290357          0.21241998 0.21312966
  m8.11        0.09988160             0.09988160          0.10307764 0.11116504
  m8.21        0.09824799             0.19224355          0.08317251 0.08425359
  m8.31        0.16732877             0.16732877          0.23880885 0.22341218
  m9.11        0.10044360             0.14946209          0.10314512 0.10314512
  m9.21        0.15065524             0.25268871          0.07892824 0.06843488
  m9.31        0.19619803             0.16741764          0.24827001 0.24768932
  m10.11       0.19678838             0.19678838          0.21879728 0.22603005
  m10.21       0.12495733             0.20979593          0.06883979 0.05995206
  m10.31       0.20352621             0.21760113          0.24407427 0.23264924
           KappaSD AccuracyLowerSD AccuracyUpperSD AccuracyNullSD
  m1.11  0.3772377      0.16006353      0.12904521     0.02598076
  m1.21  0.1977768      0.08152709      0.04481815     0.02598076
  m1.31  0.3877563      0.16890505      0.11103453     0.02598076
  m2.11  0.5000000      0.20487618      0.14554953     0.00000000
  m2.21  0.2494439      0.10663645      0.06870953     0.00000000
  m2.31  0.4231488      0.15992368      0.12004825     0.02598076
  m3.11  0.1952323      0.08499951      0.05232272     0.02598076
  m3.21  0.2582420      0.12453246      0.05168091     0.00000000
  m3.31  0.2914653      0.13752909      0.06913513     0.02598076
  m4.11  0.3333000      0.13678785      0.09905891     0.00000000
  m4.21  0.3382021      0.14916965      0.12605125     0.02598076
  m4.31  0.1763205      0.07786527      0.05078304     0.00000000
  m5.11  0.2916316      0.15352171      0.05762812     0.02598076
  m5.21  0.3467548      0.15668945      0.08316800     0.00000000
  m5.31  0.3438879      0.14848906      0.09895117     0.02598076
  m6.11  0.2106949      0.09876698      0.08042958     0.02598076
  m6.21  0.4229132      0.16057086      0.13928987     0.00000000
  m6.31  0.3788363      0.18656992      0.08659677     0.02598076
  m7.11  0.2039532      0.09313789      0.05929235     0.02598076
  m7.21  0.2737736      0.14856059      0.06811449     0.02598076
  m7.31  0.4238399      0.20515746      0.10111174     0.02598076
  m8.11  0.2097338      0.10725049      0.07248678     0.02598076
  m8.21  0.1665873      0.06976329      0.05007994     0.02598076
  m8.31  0.4754706      0.18144122      0.14097990     0.02598076
  m9.11  0.2061553      0.10183442      0.05533760     0.00000000
  m9.21  0.1596277      0.04482094      0.05293628     0.02598076
  m9.31  0.4999653      0.23668034      0.11239958     0.02598076
  m10.11 0.4396919      0.23908855      0.14287145     0.02598076
  m10.21 0.1298820      0.06036279      0.02947739     0.02598076
  m10.31 0.4831494      0.20848881      0.12271648     0.02598076
         AccuracyPValueSD McnemarPValueSD PositiveSD NegativeSD True PositiveSD
  m1.11         0.4051601       0.1973989        0.5        0.5       1.7078251
  m1.21         0.1600708       0.4196406        0.5        0.5       1.2909944
  m1.31         0.3617857       0.3986389        0.5        0.5       0.9574271
  m2.11         0.3934103       0.4392251        0.5        0.5       1.8257419
  m2.21         0.2489244       0.4439020        0.5        0.5       1.6329932
  m2.31         0.4098203       0.2446717        0.5        0.5       0.8164966
  m3.11         0.1801074       0.4174734        0.5        0.5       1.1547005
  m3.21         0.1498232       0.4174734        0.5        0.5       1.2583057
  m3.31         0.2646638       0.4693893        0.5        0.5       1.4142136
  m4.11         0.3365734       0.4205048        0.5        0.5       0.9574271
  m4.21         0.3882624       0.2199318        0.5        0.5       0.9574271
  m4.31         0.2089569       0.3986389        0.5        0.5       0.9574271
  m5.11         0.1753957       0.4196406        0.5        0.5       1.5000000
  m5.21         0.2657008       0.4895777        0.5        0.5       1.2583057
  m5.31         0.3152823       0.4084820        0.5        0.5       1.1547005
  m6.11         0.3020491       0.2726866        0.5        0.5       0.5000000
  m6.21         0.3910689       0.4416831        0.5        0.5       1.4142136
  m6.31         0.2862278       0.4693893        0.5        0.5       1.7320508
  m7.11         0.2324213       0.3868026        0.5        0.5       1.5000000
  m7.21         0.2619523       0.4132227        0.5        0.5       1.2583057
  m7.31         0.3388943       0.4392251        0.5        0.5       2.4494897
  m8.11         0.2688647       0.2136118        0.5        0.5       1.1547005
  m8.21         0.1842614       0.4330000        0.5        0.5       0.9574271
  m8.31         0.4461353       0.4128134        0.5        0.5       1.7078251
  m9.11         0.2251599       0.4090529        0.5        0.5       0.9574271
  m9.21         0.2134719       0.4284860        0.5        0.5       1.4142136
  m9.31         0.4078540       0.3999553        0.5        0.5       1.9148542
  m10.11        0.3828684       0.3760000        0.5        0.5       2.1602469
  m10.21        0.1207256       0.4364496        0.5        0.5       1.2583057
  m10.31        0.4078794       0.4999853        0.5        0.5       2.2173558
         False PositiveSD True NegativeSD False NegativeSD
  m1.11         1.4142136       0.9574271        1.2909944
  m1.21         0.9574271       0.5000000        0.5773503
  m1.31         0.5773503       1.5000000        1.2909944
  m2.11         2.0615528       1.7320508        1.8929694
  m2.21         1.7078251       1.2909944        1.2583057
  m2.31         0.9574271       1.7320508        1.5000000
  m3.11         0.9574271       1.7320508        1.5000000
  m3.21         1.4142136       1.0000000        0.5000000
  m3.31         1.7078251       1.2909944        1.2583057
  m4.11         0.5773503       1.7078251        1.7320508
  m4.21         0.5773503       1.2583057        1.7320508
  m4.31         0.8164966       0.8164966        0.5773503
  m5.11         1.4142136       1.2583057        1.4142136
  m5.21         1.0000000       1.2583057        1.6329932
  m5.31         1.2909944       1.2909944        1.5000000
  m6.11         1.0000000       0.9574271        1.0000000
  m6.21         1.5000000       1.5000000        1.4142136
  m6.31         1.5000000       0.8164966        0.5000000
  m7.11         1.9148542       1.2909944        1.2583057
  m7.21         1.6329932       1.1547005        0.9574271
  m7.31         2.0615528       0.8164966        0.5000000
  m8.11         0.9574271       0.5773503        0.9574271
  m8.21         1.0000000       1.2583057        1.0000000
  m8.31         2.1602469       1.7078251        1.2909944
  m9.11         1.2909944       1.5000000        1.0000000
  m9.21         1.5000000       1.5000000        1.0000000
  m9.31         2.2173558       0.5000000        1.0000000
  m10.11        2.3629078       0.8164966        0.5000000
  m10.21        1.2909944       1.2909944        0.9574271
  m10.31        1.8257419       1.5000000        1.4142136

  $`Araucaria angustifolia`
                algo       ROC       TSS Sensitivity Specificity Pos Pred Value
  m1.1  mahal.custom 0.9633929 0.7916667     0.98800           1              1
  m2.1  mahal.custom 0.9555556 0.7732143     0.94000           1              1
  m3.1  mahal.custom 0.9734127 0.7613095     0.92800           1              1
  m4.1  mahal.custom 0.9615079 0.7428571     0.95100           1              1
  m5.1  mahal.custom 0.9556264 0.7898810     0.95050           1              1
  m6.1  mahal.custom 0.9700397 0.6815476     0.89000           1              1
  m7.1  mahal.custom 0.9660714 0.7678571     0.97625           1              1
  m8.1  mahal.custom 0.9461310 0.7851190     0.95175           1              1
  m9.1  mahal.custom 0.9570437 0.7666667     0.96300           1              1
  m10.1 mahal.custom 0.9636905 0.7964286     0.96300           1              1
        Neg Pred Value Precision  Recall      F1 Prevalence Detection Rate
  m1.1         0.96425         1 0.98800 0.96475    0.76650        0.75725
  m2.1         0.85325         1 0.94000 0.94375    0.77350        0.72700
  m3.1         0.83325         1 0.92800 0.93675    0.77350        0.71775
  m4.1         0.82250         1 0.95100 0.94575    0.77350        0.73600
  m5.1         0.85175         1 0.95050 0.95075    0.76650        0.72875
  m6.1         0.77525         1 0.89000 0.90900    0.77350        0.68850
  m7.1         0.92850         1 0.97625 0.95900    0.77350        0.75500
  m8.1         0.83675         1 0.95175 0.95175    0.78125        0.74400
  m9.1         0.86650         1 0.96300 0.95150    0.76650        0.73850
  m10.1        0.86650         1 0.96300 0.95775    0.78125        0.75250
        Detection Prevalence Balanced Accuracy Accuracy   Kappa AccuracyLower
  m1.1               0.80400           0.89575  0.94425 0.83200       0.78200
  m2.1               0.76475           0.88650  0.91575 0.77100       0.74550
  m3.1               0.75500           0.88075  0.90675 0.75525       0.73775
  m4.1               0.78325           0.87150  0.91500 0.74875       0.74125
  m5.1               0.76625           0.89500  0.92500 0.78925       0.75550
  m6.1               0.73550           0.84050  0.86800 0.65950       0.68275
  m7.1               0.80175           0.88400  0.93500 0.79775       0.77200
  m8.1               0.78125           0.89275  0.92525 0.78450       0.75700
  m9.1               0.78550           0.88325  0.92500 0.78450       0.75875
  m10.1              0.78975           0.89850  0.93375 0.80275       0.76575
        AccuracyUpper AccuracyNull AccuracyPValue McnemarPValue Positive Negative
  m1.1        0.99500      0.76650        0.98050     0.7400000     20.5     6.25
  m2.1        0.98150      0.77350        0.96250     0.7127500     20.5     6.00
  m3.1        0.97400      0.77350        0.96275     0.5670000     20.5     6.00
  m4.1        0.98550      0.77350        0.97400     1.0000000     20.5     6.00
  m5.1        0.98925      0.76650        0.93150     0.8700000     20.5     6.25
  m6.1        0.96325      0.77350        0.88725     0.3512500     20.5     6.00
  m7.1        0.98775      0.77350        0.93800     0.7493333     20.5     6.00
  m8.1        0.98575      0.78125        0.98975     1.0000000     20.5     5.75
  m9.1        0.98575      0.76650        0.97275     1.0000000     20.5     6.25
  m10.1       0.99125      0.78125        0.98700     1.0000000     20.5     5.75
        True Positive False Positive True Negative False Negative      ROCSD
  m1.1          20.25          11.00          6.25           1.25 0.03023239
  m2.1          19.25          11.25          6.00           1.00 0.04038661
  m3.1          19.00          11.50          6.00           1.00 0.03261702
  m4.1          19.50          11.25          6.00           1.25 0.03677011
  m5.1          19.50          11.00          6.25           1.00 0.04473929
  m6.1          18.25          11.50          6.00           1.25 0.03441417
  m7.1          20.00          11.00          6.00           1.25 0.03050053
  m8.1          19.50          11.75          5.75           1.00 0.05257337
  m9.1          19.75          11.25          6.25           1.25 0.03565306
  m10.1         19.75          10.75          5.75           1.00 0.02423236
            TSSSD SensitivitySD SpecificitySD Pos Pred ValueSD Neg Pred ValueSD
  m1.1  0.1280339    0.09085657     0.1484644       0.04236744       0.07150000
  m2.1  0.1451584    0.14195158     0.1359470       0.03753221       0.20931854
  m3.1  0.1770077    0.15516738     0.1359470       0.03626752       0.23570232
  m4.1  0.1599910    0.14670236     0.1593683       0.04427942       0.05641144
  m5.1  0.1704613    0.17058991     0.1364609       0.03880722       0.10806904
  m6.1  0.2354255    0.23528334     0.1593683       0.04201984       0.25955780
  m7.1  0.2088146    0.15220710     0.2096736       0.05162929       0.14300000
  m8.1  0.1591309    0.11893240     0.1359470       0.03724133       0.11983704
  m9.1  0.1710644    0.12114007     0.1484644       0.04543494       0.09034932
  m10.1 0.1373337    0.04383587     0.1359470       0.03722454       0.09034932
        PrecisionSD   RecallSD       F1SD PrevalenceSD Detection RateSD
  m1.1   0.04236744 0.09085657 0.08567380  0.017521415       0.07625123
  m2.1   0.03753221 0.14195158 0.13703862  0.005196152       0.11034793
  m3.1   0.03626752 0.15516738 0.15548097  0.005196152       0.12001493
  m4.1   0.04427942 0.14670236 0.15362617  0.005196152       0.11330012
  m5.1   0.03880722 0.17058991 0.16469871  0.011789826       0.13359266
  m6.1   0.04201984 0.23528334 0.23139721  0.005196152       0.18123557
  m7.1   0.05162929 0.15220710 0.13875968  0.005196152       0.11946652
  m8.1   0.03724133 0.11893240 0.11978696  0.013200379       0.09628560
  m9.1   0.04543494 0.12114007 0.12182604  0.017521415       0.09428680
  m10.1  0.03722454 0.04383587 0.04053805  0.013200379       0.03192047
        Detection PrevalenceSD Balanced AccuracySD AccuracySD    KappaSD
  m1.1              0.07625123          0.06411123 0.06094807 0.07058801
  m2.1              0.11034793          0.07283543 0.11071096 0.16399797
  m3.1              0.12001493          0.08845856 0.11920570 0.21282916
  m4.1              0.11330012          0.07990620 0.11530250 0.11658009
  m5.1              0.13359266          0.08509358 0.13052714 0.13895443
  m6.1              0.18123557          0.11773523 0.18170925 0.19442115
  m7.1              0.11946652          0.10444456 0.11599713 0.17728955
  m8.1              0.09628560          0.07940351 0.09026073 0.15286268
  m9.1              0.09428680          0.08566359 0.09567088 0.15369776
  m10.1             0.03192047          0.06848114 0.03777455 0.10781891
        AccuracyLowerSD AccuracyUpperSD AccuracyNullSD AccuracyPValueSD
  m1.1       0.05842944      0.05000333    0.017521415       0.02573584
  m2.1       0.10353542      0.09182002    0.005196152       0.20286038
  m3.1       0.12014262      0.10017110    0.005196152       0.29012914
  m4.1       0.10318915      0.10068888    0.005196152       0.05516641
  m5.1       0.12462343      0.10599174    0.011789826       0.11299705
  m6.1       0.17047458      0.15024535    0.005196152       0.22112591
  m7.1       0.11326775      0.09232010    0.005196152       0.11671332
  m8.1       0.07903744      0.07970989    0.013200379       0.05772564
  m9.1       0.08705314      0.08171087    0.017521415       0.04847250
  m10.1      0.04650717      0.03024759    0.013200379       0.04819665
        McnemarPValueSD PositiveSD NegativeSD True PositiveSD False PositiveSD
  m1.1      0.300222140  0.5773503        0.5       2.0816660        1.6329932
  m2.1      0.334659404  0.5773503        0.0       2.9860788        2.9860788
  m3.1      0.396720304  0.5773503        0.0       3.1622777        3.1091264
  m4.1      0.003265986  0.5773503        0.0       2.9860788        3.2015621
  m5.1      0.260000000  0.5773503        0.5       3.6968455        3.2659863
  m6.1      0.191842600  0.5773503        0.0       4.7609523        4.7958315
  m7.1      0.434167402  0.5773503        0.0       3.3166248        2.9439203
  m8.1      0.003593976  0.5773503        0.5       2.2173558        2.7537853
  m9.1      0.003304038  0.5773503        0.5       2.5000000        2.6299556
  m10.1     0.001414214  0.5773503        0.5       0.9574271        0.9574271
        True NegativeSD False NegativeSD
  m1.1        0.8164966        0.9574271
  m2.1        0.8164966        0.8164966
  m3.1        0.8164966        0.8164966
  m4.1        0.9574271        0.9574271
  m5.1        0.9574271        0.8164966
  m6.1        0.9574271        0.9574271
  m7.1        1.2583057        1.2583057
  m8.1        0.5000000        0.8164966
  m9.1        0.8164966        0.9574271
  m10.1       0.5000000        0.8164966
Code
  i2$models
Output
           caretSDM        
  .........................
  Class                   : Models
  Algorithms Names        : kknn 
  Variables Names         : bio1 bio4 bio12 
  Model Validation        :
           Method          : repeatedcv 
           Number          : 4 
           Metrics         :
  $`Salminus brasiliensis`
         algo       ROC       TSS Sensitivity Specificity Pos Pred Value
  m1.11  kknn 0.9500000 0.9000000     0.95000     0.95000        0.95825
  m1.21  kknn 0.8000000 0.5250000     0.71675     0.85825        0.81675
  m1.31  kknn 0.9750000 0.8500000     0.90000     0.95000        0.95825
  m2.11  kknn 0.8891667 0.6583333     0.80000     0.85825        0.86425
  m2.21  kknn 0.8259722 0.4416667     0.71675     0.77500        0.79275
  m2.31  kknn 0.9583333 0.7416667     0.86675     0.87500        0.89275
  m3.11  kknn 0.9791667 0.9583333     0.95825     1.00000        1.00000
  m3.21  kknn 0.8433333 0.6333333     0.67500     0.95825        0.95825
  m3.31  kknn 0.9291667 0.8583333     0.90825     0.95000        0.95825
  m4.11  kknn 0.9291667 0.8583333     0.90000     0.95825        0.95000
  m4.21  kknn 0.7958333 0.5916667     0.68325     0.90825        0.88750
  m4.31  kknn 0.9650000 0.8583333     0.90825     0.95000        0.95825
  m5.11  kknn 0.9541667 0.9083333     0.95825     0.95000        0.95825
  m5.21  kknn 0.8391667 0.5166667     0.66675     0.90000        0.88750
  m5.31  kknn 0.9375000 0.8750000     0.91675     0.95825        0.95825
  m6.11  kknn 0.9041667 0.8083333     0.85825     0.95000        0.93750
  m6.21  kknn 0.8941667 0.6666667     0.80000     0.86675        0.88100
  m6.31  kknn 0.9750000 0.9500000     0.95000     1.00000        1.00000
  m7.11  kknn 0.9000000 0.8000000     0.85000     0.95000        0.96425
  m7.21  kknn 0.7466667 0.4083333     0.55825     0.85000        0.81250
  m7.31  kknn 0.9900000 0.9000000     0.95000     0.95000        0.95825
  m8.11  kknn 0.9291667 0.8583333     0.90825     0.95000        0.95000
  m8.21  kknn 0.8958333 0.5083333     0.76675     0.74175        0.82500
  m8.31  kknn 0.9250000 0.8500000     0.90000     0.95000        0.95000
  m9.11  kknn 0.8833333 0.7666667     0.81675     0.95000        0.95825
  m9.21  kknn 0.9030556 0.7083333     0.80000     0.90825        0.91425
  m9.31  kknn 0.9250000 0.8500000     0.95000     0.90000        0.92250
  m10.11 kknn 0.9750000 0.9500000     0.95000     1.00000        1.00000
  m10.21 kknn 0.7875000 0.4750000     0.62500     0.85000        0.82500
  m10.31 kknn 0.9750000 0.9500000     0.95000     1.00000        1.00000
         Neg Pred Value Precision  Recall      F1 Prevalence Detection Rate
  m1.11         0.95825   0.95825 0.95000 0.94950        0.5        0.47500
  m1.21         0.73675   0.81675 0.71675 0.75425        0.5        0.35700
  m1.31         0.92850   0.95825 0.90000 0.91475        0.5        0.45000
  m2.11         0.81650   0.86425 0.80000 0.82525        0.5        0.40000
  m2.21         0.71675   0.79275 0.71675 0.72050        0.5        0.35825
  m2.31         0.86600   0.89275 0.86675 0.86675        0.5        0.43200
  m3.11         0.95825   1.00000 0.95825 0.97725        0.5        0.47750
  m3.21         0.76325   0.95825 0.67500 0.76900        0.5        0.33200
  m3.31         0.90825   0.95825 0.90825 0.93050        0.5        0.45250
  m4.11         0.91650   0.95000 0.90000 0.92225        0.5        0.45225
  m4.21         0.76400   0.88750 0.68325 0.74175        0.5        0.33650
  m4.31         0.92250   0.95825 0.90825 0.92675        0.5        0.45425
  m5.11         0.95825   0.95825 0.95825 0.95450        0.5        0.47750
  m5.21         0.71200   0.88750 0.66675 0.71675        0.5        0.33425
  m5.31         0.92850   0.95825 0.91675 0.92725        0.5        0.45475
  m6.11         0.87500   0.93750 0.85825 0.89400        0.5        0.42750
  m6.21         0.83675   0.88100 0.80000 0.82225        0.5        0.40225
  m6.31         0.95825   1.00000 0.95000 0.97225        0.5        0.47500
  m7.11         0.89575   0.96425 0.85000 0.89050        0.5        0.42950
  m7.21         0.67625   0.81250 0.55825 0.64275        0.5        0.28425
  m7.31         0.95825   0.95825 0.95000 0.94950        0.5        0.47500
  m8.11         0.90825   0.95000 0.90825 0.92725        0.5        0.45250
  m8.21         0.80350   0.82500 0.76675 0.75825        0.5        0.37975
  m8.31         0.91425   0.95000 0.90000 0.92225        0.5        0.45225
  m9.11         0.85700   0.95825 0.81675 0.86475        0.5        0.40475
  m9.21         0.83675   0.91425 0.80000 0.84050        0.5        0.40000
  m9.31         0.95825   0.92250 0.95000 0.93025        0.5        0.47500
  m10.11        0.95825   1.00000 0.95000 0.97225        0.5        0.47500
  m10.21        0.69700   0.82500 0.62500 0.70425        0.5        0.31150
  m10.31        0.95825   1.00000 0.95000 0.97225        0.5        0.47500
         Detection Prevalence Balanced Accuracy Accuracy   Kappa AccuracyLower
  m1.11               0.50000           0.95000  0.95000 0.90000       0.63425
  m1.21               0.45000           0.76250  0.76350 0.52500       0.41950
  m1.31               0.47500           0.92500  0.92500 0.85000       0.60650
  m2.11               0.47075           0.82925  0.82925 0.65825       0.49675
  m2.21               0.49575           0.72075  0.72075 0.44175       0.37825
  m2.31               0.50000           0.87075  0.86350 0.73375       0.54350
  m3.11               0.47750           0.97925  0.97725 0.95500       0.67150
  m3.21               0.35450           0.81675  0.80900 0.62400       0.46625
  m3.31               0.47500           0.92925  0.92950 0.85825       0.61100
  m4.11               0.47500           0.92925  0.92950 0.85825       0.61100
  m4.21               0.38425           0.79600  0.78850 0.58625       0.45750
  m4.31               0.47925           0.92925  0.92925 0.85825       0.60425
  m5.11               0.50250           0.95425  0.95225 0.90500       0.63725
  m5.21               0.42975           0.75825  0.76125 0.51650       0.41600
  m5.31               0.47725           0.93750  0.93175 0.86625       0.61325
  m6.11               0.45250           0.90425  0.90225 0.80500       0.58550
  m6.21               0.47025           0.83325  0.83400 0.66825       0.49400
  m6.31               0.47500           0.97500  0.97500 0.95000       0.66925
  m7.11               0.45225           0.90000  0.90675 0.80875       0.57900
  m7.21               0.35675           0.70425  0.71125 0.41350       0.37050
  m7.31               0.50000           0.95000  0.95000 0.90000       0.63425
  m8.11               0.47750           0.92925  0.92725 0.85500       0.60950
  m8.21               0.51600           0.75400  0.74300 0.50325       0.40575
  m8.31               0.47725           0.92500  0.92725 0.85350       0.60950
  m9.11               0.42975           0.88325  0.87950 0.76125       0.54900
  m9.21               0.44575           0.85425  0.85425 0.70825       0.51450
  m9.31               0.52275           0.92500  0.92725 0.85350       0.60300
  m10.11              0.47500           0.97500  0.97500 0.95000       0.66925
  m10.21              0.40925           0.73750  0.73850 0.47775       0.39550
  m10.31              0.47500           0.97500  0.97500 0.95000       0.66850
         AccuracyUpper AccuracyNull AccuracyPValue McnemarPValue Positive
  m1.11        0.99850       0.5000        0.00575     1.0000000     5.25
  m1.21        0.95450       0.5225        0.19800     0.8700000     5.25
  m1.31        0.99300       0.5000        0.01675     0.7400000     5.25
  m2.11        0.96750       0.5000        0.10050     1.0000000     5.25
  m2.21        0.93275       0.5000        0.16725     1.0000000     5.25
  m2.31        0.96700       0.5225        0.11200     0.5485000     5.25
  m3.11        0.99950       0.5225        0.00400     1.0000000     5.25
  m3.21        0.97200       0.5225        0.07650     0.5520000     5.25
  m3.31        0.99350       0.5225        0.01850     1.0000000     5.25
  m4.11        0.99350       0.5225        0.01850     1.0000000     5.25
  m4.21        0.95025       0.5225        0.15475     0.7113333     5.25
  m4.31        0.99800       0.5000        0.00650     1.0000000     5.25
  m5.11        0.99875       0.5225        0.00650     1.0000000     5.25
  m5.21        0.95625       0.5225        0.16825     0.8700000     5.25
  m5.31        0.99375       0.5225        0.01900     0.7400000     5.25
  m6.11        0.98275       0.5225        0.04675     1.0000000     5.25
  m6.21        0.97750       0.5225        0.06550     0.8700000     5.25
  m6.31        0.99925       0.5225        0.00350     1.0000000     5.25
  m7.11        0.99300       0.5225        0.02150     0.8266667     5.25
  m7.21        0.93200       0.5225        0.19825     0.7162500     5.25
  m7.31        0.99850       0.5000        0.00575     1.0000000     5.25
  m8.11        0.99325       0.5225        0.01750     1.0000000     5.25
  m8.21        0.93625       0.5225        0.24675     0.6385000     5.25
  m8.31        0.99325       0.5225        0.01750     1.0000000     5.25
  m9.11        0.98725       0.5225        0.03200     0.6533333     5.25
  m9.21        0.98625       0.5000        0.07125     0.8700000     5.25
  m9.31        0.99800       0.5225        0.00900     1.0000000     5.25
  m10.11       0.99925       0.5225        0.00350     1.0000000     5.25
  m10.21       0.94400       0.5225        0.21950     0.7742500     5.25
  m10.31       0.99925       0.5000        0.00325     1.0000000     5.25
         Negative True Positive False Positive True Negative False Negative
  m1.11      5.25          5.00           0.25          5.00           0.25
  m1.21      5.25          3.75           2.00          4.50           1.00
  m1.31      5.25          4.75           0.50          5.00           0.25
  m2.11      5.25          4.25           1.00          4.50           0.75
  m2.21      5.25          3.75           1.75          4.00           1.50
  m2.31      5.25          4.50           0.75          4.50           0.75
  m3.11      5.25          5.00           0.25          5.25           0.00
  m3.21      5.25          3.50           1.75          5.00           0.25
  m3.31      5.25          4.75           0.50          5.00           0.25
  m4.11      5.25          4.75           0.50          5.00           0.25
  m4.21      5.25          3.50           1.75          4.75           0.50
  m4.31      5.25          4.75           0.50          5.00           0.25
  m5.11      5.25          5.00           0.25          5.00           0.25
  m5.21      5.25          3.50           2.00          4.75           1.00
  m5.31      5.25          4.75           0.50          5.00           0.25
  m6.11      5.25          4.50           0.75          5.00           0.25
  m6.21      5.25          4.25           1.00          4.50           0.75
  m6.31      5.25          5.00           0.25          5.25           0.00
  m7.11      5.25          4.50           0.75          5.00           0.25
  m7.21      5.25          3.00           2.25          4.50           0.75
  m7.31      5.25          5.00           0.25          5.00           0.25
  m8.11      5.25          4.75           0.50          5.00           0.25
  m8.21      5.25          4.00           1.50          3.75           1.50
  m8.31      5.25          4.75           0.50          5.00           0.25
  m9.11      5.25          4.25           1.00          5.00           0.25
  m9.21      5.25          4.25           1.25          4.75           0.75
  m9.31      5.25          5.00           0.25          4.75           0.50
  m10.11     5.25          5.00           0.25          5.25           0.00
  m10.21     5.25          3.25           2.00          4.50           1.00
  m10.31     5.25          5.00           0.25          5.25           0.00
              ROCSD      TSSSD SensitivitySD SpecificitySD Pos Pred ValueSD
  m1.11  0.05773503 0.11547005     0.1000000     0.1000000       0.08350000
  m1.21  0.11970256 0.23940513     0.2212591     0.1641308       0.13731563
  m1.31  0.05000000 0.19148542     0.2000000     0.1000000       0.08350000
  m2.11  0.03370625 0.30595933     0.1632993     0.1893117       0.18862374
  m2.21  0.11069680 0.20615528     0.1885619     0.2061553       0.17533848
  m2.31  0.08333333 0.33374974     0.1631633     0.2500000       0.21450000
  m3.11  0.04166667 0.08333333     0.0835000     0.0000000       0.00000000
  m3.21  0.08814970 0.14142136     0.2217356     0.0835000       0.08350000
  m3.31  0.08858455 0.17716910     0.1067969     0.1000000       0.08350000
  m4.11  0.08858455 0.17716910     0.1154701     0.0835000       0.10000000
  m4.21  0.15053915 0.30107831     0.2849367     0.1067969       0.13149778
  m4.31  0.04725816 0.09574271     0.1067969     0.1000000       0.08350000
  m5.11  0.05335937 0.10671874     0.0835000     0.1000000       0.08350000
  m5.21  0.12583057 0.18358568     0.1667001     0.1373156       0.16520190
  m5.31  0.07978559 0.15957118     0.1665000     0.0835000       0.08350000
  m6.11  0.14166667 0.28333333     0.1893117     0.1000000       0.12500000
  m6.21  0.08247895 0.16329932     0.1632993     0.1631633       0.15779100
  m6.31  0.05000000 0.10000000     0.1000000     0.0000000       0.00000000
  m7.11  0.08164966 0.16329932     0.1914854     0.1000000       0.07150000
  m7.21  0.15930404 0.17716910     0.2060071     0.1000000       0.14218884
  m7.31  0.02000000 0.11547005     0.1000000     0.1000000       0.08350000
  m8.11  0.09464847 0.18929694     0.1067969     0.1000000       0.10000000
  m8.21  0.14101156 0.26579719     0.2516391     0.3945955       0.23629078
  m8.31  0.09574271 0.19148542     0.1154701     0.1000000       0.10000000
  m9.11  0.08819171 0.17638342     0.2133594     0.1000000       0.08350000
  m9.21  0.11665212 0.17716910     0.1914854     0.1067969       0.10806904
  m9.31  0.05000000 0.10000000     0.1000000     0.1154701       0.09002407
  m10.11 0.05000000 0.10000000     0.1000000     0.0000000       0.00000000
  m10.21 0.15478480 0.20615528     0.1258306     0.1632993       0.16520190
  m10.31 0.05000000 0.10000000     0.1000000     0.0000000       0.00000000
         Neg Pred ValueSD PrecisionSD  RecallSD       F1SD PrevalenceSD
  m1.11        0.08350000  0.08350000 0.1000000 0.05888124   0.00000000
  m1.21        0.14981405  0.13731563 0.2212591 0.17129604   0.03674235
  m1.31        0.14300000  0.08350000 0.2000000 0.11791346   0.00000000
  m2.11        0.16440702  0.18862374 0.1632993 0.15101959   0.00000000
  m2.21        0.10873324  0.17533848 0.1885619 0.12085391   0.00000000
  m2.31        0.15542630  0.21450000 0.1631633 0.16316326   0.03674235
  m3.11        0.08350000  0.00000000 0.0835000 0.04550000   0.03674235
  m3.21        0.16331437  0.08350000 0.2217356 0.10120277   0.03674235
  m3.31        0.10679693  0.08350000 0.1067969 0.08344459   0.03674235
  m4.11        0.09641749  0.10000000 0.1154701 0.09685169   0.03674235
  m4.21        0.19419063  0.13149778 0.2849367 0.21143695   0.03674235
  m4.31        0.09002407  0.08350000 0.1067969 0.04973513   0.00000000
  m5.11        0.08350000  0.08350000 0.0835000 0.05253887   0.03674235
  m5.21        0.06271098  0.16520190 0.1667001 0.11160794   0.03674235
  m5.31        0.14300000  0.08350000 0.1665000 0.09506270   0.03674235
  m6.11        0.15945532  0.12500000 0.1893117 0.15729590   0.03674235
  m6.21        0.11983704  0.15779100 0.1632993 0.09814742   0.03674235
  m6.31        0.08350000  0.00000000 0.1000000 0.05550000   0.03674235
  m7.11        0.12505565  0.07150000 0.1914854 0.10454505   0.03674235
  m7.21        0.09409702  0.14218884 0.2060071 0.14411656   0.03674235
  m7.31        0.08350000  0.08350000 0.1000000 0.05888124   0.00000000
  m8.11        0.10679693  0.10000000 0.1067969 0.09506270   0.03674235
  m8.21        0.17126661  0.23629078 0.2516391 0.13348034   0.03674235
  m8.31        0.10171324  0.10000000 0.1154701 0.09685169   0.03674235
  m9.11        0.16512218  0.08350000 0.2133594 0.11196837   0.03674235
  m9.21        0.14719007  0.10806904 0.1914854 0.10711053   0.00000000
  m9.31        0.08350000  0.09002407 0.1000000 0.04854809   0.03674235
  m10.11       0.08350000  0.00000000 0.1000000 0.05550000   0.03674235
  m10.21       0.11192371  0.16520190 0.1258306 0.10307764   0.03674235
  m10.31       0.08350000  0.00000000 0.1000000 0.05550000   0.00000000
         Detection RateSD Detection PrevalenceSD Balanced AccuracySD AccuracySD
  m1.11        0.05000000             0.08164966          0.05773503 0.05773503
  m1.21        0.09572704             0.11233581          0.11960212 0.13077557
  m1.31        0.10000000             0.12583057          0.09574271 0.09574271
  m2.11        0.08164966             0.08844348          0.15304329 0.15304329
  m2.21        0.09428105             0.16844064          0.10322588 0.10322588
  m2.31        0.07851964             0.11104354          0.16689992 0.17425173
  m3.11        0.02598076             0.02598076          0.04150000 0.04550000
  m3.21        0.08298193             0.12763620          0.07086783 0.07502444
  m3.31        0.04092676             0.06204837          0.08844348 0.08802083
  m4.11        0.08446054             0.06204837          0.08844348 0.08802083
  m4.21        0.13252798             0.14089801          0.15045930 0.15988642
  m4.31        0.05328149             0.09159103          0.04784262 0.04784262
  m5.11        0.02598076             0.06837397          0.05328149 0.05525924
  m5.21        0.09572704             0.13277927          0.09181322 0.08581181
  m5.31        0.06411123             0.07842353          0.07990202 0.08712587
  m6.11        0.08760708             0.04092676          0.14167657 0.14149293
  m6.21        0.10376375             0.14942194          0.08178580 0.08676789
  m6.31        0.06204837             0.06204837          0.05000000 0.05000000
  m7.11        0.12065516             0.15373652          0.08164966 0.07443733
  m7.21        0.12510895             0.15391204          0.08872570 0.08971575
  m7.31        0.05000000             0.08164966          0.05773503 0.05773503
  m8.11        0.04092676             0.02598076          0.09463394 0.09506270
  m8.21        0.10974326             0.29943391          0.13305888 0.14984214
  m8.31        0.08446054             0.07842353          0.09574271 0.09506270
  m9.11        0.08987167             0.13010348          0.08825484 0.09136557
  m9.21        0.09574271             0.12263326          0.08872570 0.08872570
  m9.31        0.06204837             0.11321182          0.05000000 0.04868521
  m10.11       0.06204837             0.06204837          0.05000000 0.05000000
  m10.21       0.06035727             0.11117966          0.10307764 0.11149140
  m10.31       0.05000000             0.05000000          0.05000000 0.05000000
            KappaSD AccuracyLowerSD AccuracyUpperSD AccuracyNullSD
  m1.11  0.11547005      0.09317859     0.001732051     0.00000000
  m1.21  0.24249948      0.11276524     0.071339564     0.02598076
  m1.31  0.19148542      0.13276671     0.012083046     0.00000000
  m2.11  0.30589582      0.15903537     0.059668529     0.00000000
  m2.21  0.20600708      0.08126654     0.059868606     0.00000000
  m2.31  0.33988662      0.18560442     0.051813769     0.02598076
  m3.11  0.09000000      0.05736724     0.001000000     0.02598076
  m3.21  0.14314561      0.08442896     0.023930455     0.02598076
  m3.31  0.17731023      0.11128642     0.011090537     0.02598076
  m4.11  0.17731023      0.11128642     0.011090537     0.02598076
  m4.21  0.30728746      0.17313867     0.048300276     0.02598076
  m4.31  0.09577186      0.06497884     0.001414214     0.00000000
  m5.11  0.11000000      0.07817235     0.001500000     0.02598076
  m5.21  0.17642562      0.08113158     0.040743098     0.02598076
  m5.31  0.17016536      0.10052985     0.011206397     0.02598076
  m6.11  0.28301943      0.16785013     0.033180064     0.02598076
  m6.21  0.17033765      0.09253108     0.027160020     0.02598076
  m6.31  0.10000000      0.07693450     0.001500000     0.02598076
  m7.11  0.15484481      0.08721238     0.010739336     0.02598076
  m7.21  0.17701318      0.09145308     0.040849317     0.02598076
  m7.31  0.11547005      0.09317859     0.001732051     0.00000000
  m8.11  0.19000000      0.12360286     0.012203142     0.02598076
  m8.21  0.27163379      0.13352247     0.072724938     0.02598076
  m8.31  0.19039170      0.12360286     0.012203142     0.02598076
  m9.11  0.18075651      0.11986937     0.013073510     0.02598076
  m9.21  0.17702801      0.11113168     0.027097048     0.00000000
  m9.31  0.09788939      0.07617524     0.001414214     0.02598076
  m10.11 0.10000000      0.07693450     0.001500000     0.02598076
  m10.21 0.21436787      0.10561566     0.053099749     0.02598076
  m10.31 0.10000000      0.07833475     0.001500000     0.00000000
         AccuracyPValueSD McnemarPValueSD PositiveSD NegativeSD True PositiveSD
  m1.11       0.006075909      0.00000000        0.5        0.5       0.8164966
  m1.21       0.282014184      0.33465940        0.5        0.5       0.9574271
  m1.31       0.025979158      0.36769553        0.5        0.5       1.2583057
  m2.11       0.184371907      0.00000000        0.5        0.5       1.2583057
  m2.21       0.156538334      0.37600000        0.5        0.5       1.0000000
  m2.31       0.184184690      0.09687363        0.5        0.5       0.5773503
  m3.11       0.006000000              NA        0.5        0.5       0.0000000
  m3.21       0.073708887      0.31806079        0.5        0.5       1.0000000
  m3.31       0.028722813      0.00000000        0.5        0.5       0.5000000
  m4.11       0.028722813      0.00000000        0.5        0.5       0.9574271
  m4.21       0.169056943      0.49998533        0.5        0.5       1.2909944
  m4.31       0.005259911      0.00000000        0.5        0.5       0.5000000
  m5.11       0.006403124      0.00000000        0.5        0.5       0.0000000
  m5.21       0.154189007      0.37921322        0.5        0.5       0.9574271
  m5.31       0.028565714      0.36769553        0.5        0.5       0.5000000
  m6.11       0.083691397      0.00000000        0.5        0.5       1.0000000
  m6.21       0.080917654      0.26000000        0.5        0.5       1.2583057
  m6.31       0.005000000              NA        0.5        0.5       0.8164966
  m7.11       0.026851443      0.30022214        0.5        0.5       1.2909944
  m7.21       0.131289439      0.36061833        0.5        0.5       1.4142136
  m7.31       0.006075909      0.00000000        0.5        0.5       0.8164966
  m8.11       0.025632011      0.00000000        0.5        0.5       0.5000000
  m8.21       0.278717898      0.48957771        0.5        0.5       1.2583057
  m8.31       0.025632011      0.00000000        0.5        0.5       0.9574271
  m9.11       0.030397368      0.30022214        0.5        0.5       0.9574271
  m9.21       0.071500000      0.26000000        0.5        0.5       1.4142136
  m9.31       0.005416026      0.00000000        0.5        0.5       0.8164966
  m10.11      0.005000000              NA        0.5        0.5       0.8164966
  m10.21      0.186528818      0.26660630        0.5        0.5       0.5000000
  m10.31      0.005188127              NA        0.5        0.5       0.8164966
         False PositiveSD True NegativeSD False NegativeSD
  m1.11         0.5000000       0.8164966        0.5000000
  m1.21         1.4142136       0.9574271        0.8164966
  m1.31         1.0000000       0.8164966        0.5000000
  m2.11         0.8164966       1.0000000        0.9574271
  m2.21         0.9574271       0.8164966        1.2583057
  m2.31         0.9574271       1.0000000        1.5000000
  m3.11         0.5000000       0.5000000        0.0000000
  m3.21         1.2583057       0.0000000        0.5000000
  m3.31         0.5773503       0.8164966        0.5000000
  m4.11         0.5773503       0.0000000        0.5000000
  m4.21         1.7078251       0.5000000        0.5773503
  m4.31         0.5773503       0.8164966        0.5000000
  m5.11         0.5000000       0.8164966        0.5000000
  m5.21         0.8164966       0.9574271        0.8164966
  m5.31         1.0000000       0.0000000        0.5000000
  m6.11         0.9574271       0.8164966        0.5000000
  m6.21         0.8164966       0.5773503        0.9574271
  m6.31         0.5000000       0.5000000        0.0000000
  m7.11         0.9574271       0.8164966        0.5000000
  m7.21         0.9574271       1.0000000        0.5000000
  m7.31         0.5000000       0.8164966        0.5000000
  m8.11         0.5773503       0.8164966        0.5000000
  m8.21         1.2909944       1.8929694        2.3804761
  m8.31         0.5773503       0.8164966        0.5000000
  m9.11         1.1547005       0.8164966        0.5000000
  m9.21         0.9574271       0.5773503        0.5773503
  m9.31         0.5000000       0.9574271        0.5773503
  m10.11        0.5000000       0.5000000        0.0000000
  m10.21        0.8164966       1.2583057        0.8164966
  m10.31        0.5000000       0.5000000        0.0000000

  $`Araucaria angustifolia`
        algo       ROC       TSS Sensitivity Specificity Pos Pred Value
  m1.1  kknn 0.9729167 0.9458333     0.98750     0.95825        0.98750
  m2.1  kknn 0.9520833 0.8922619     0.97550     0.91650        0.97550
  m3.1  kknn 0.9464286 0.8928571     0.97625     0.91650        0.97675
  m4.1  kknn 0.9464286 0.8678571     0.95125     0.91650        0.97625
  m5.1  kknn 0.9464286 0.7797619     0.98800     0.79150        0.94800
  m6.1  kknn 0.9732143 0.9464286     0.98800     0.95825        0.98800
  m7.1  kknn 0.9464286 0.8928571     0.97625     0.91650        0.97675
  m8.1  kknn 0.9692460 0.8922619     0.97550     0.91650        0.97675
  m9.1  kknn 0.9464286 0.8511905     0.97625     0.87500        0.96625
  m10.1 kknn 0.9629960 0.8089286     0.97550     0.83325        0.95625
        Neg Pred Value Precision  Recall      F1 Prevalence Detection Rate
  m1.1         0.95825   0.98750 0.98750 0.98750    0.76650        0.75700
  m2.1         0.92250   0.97550 0.97550 0.97550    0.77350        0.75475
  m3.1         0.93750   0.97675 0.97625 0.97575    0.77350        0.75500
  m4.1         0.86600   0.97625 0.95125 0.96275    0.77350        0.73575
  m5.1         0.95825   0.94800 0.98800 0.96625    0.76650        0.75725
  m6.1         0.96425   0.98800 0.98800 0.98800    0.77350        0.76425
  m7.1         0.93750   0.97675 0.97625 0.97575    0.77350        0.75500
  m8.1         0.91650   0.97675 0.97550 0.97575    0.78125        0.76200
  m9.1         0.94450   0.96625 0.97625 0.97025    0.76650        0.74875
  m10.1        0.91650   0.95625 0.97550 0.96475    0.78100        0.76175
        Detection Prevalence Balanced Accuracy Accuracy   Kappa AccuracyLower
  m1.1               0.76650           0.97300  0.98075 0.94575       0.84150
  m2.1               0.77400           0.94625  0.96200 0.89175       0.80875
  m3.1               0.77400           0.94650  0.96275 0.89500       0.80975
  m4.1               0.75425           0.93400  0.94375 0.84725       0.78375
  m5.1               0.80350           0.89000  0.94450 0.80575       0.79000
  m6.1               0.77400           0.97325  0.98125 0.94600       0.83850
  m7.1               0.77400           0.94650  0.96275 0.89500       0.80975
  m8.1               0.78050           0.94625  0.96225 0.88900       0.80775
  m9.1               0.78650           0.92550  0.95425 0.86700       0.79850
  m10.1              0.79900           0.90450  0.94350 0.81925       0.78225
        AccuracyUpper AccuracyNull AccuracyPValue McnemarPValue Positive Negative
  m1.1        0.99775      0.76650        0.01075     1.0000000     20.5     6.25
  m2.1        0.99725      0.77350        0.01550     1.0000000     20.5     6.00
  m3.1        0.99725      0.77350        0.01575     0.8266667     20.5     6.00
  m4.1        0.99150      0.77350        0.04275     0.8266667     20.5     6.00
  m5.1        0.98725      0.76650        0.07350     0.5670000     20.5     6.25
  m6.1        0.99950      0.77350        0.00550     1.0000000     20.5     6.00
  m7.1        0.99725      0.77350        0.01575     0.8266667     20.5     6.00
  m8.1        0.99725      0.78125        0.02000     1.0000000     20.5     5.75
  m9.1        0.99525      0.76650        0.02525     0.6533333     20.5     6.25
  m10.1       0.99150      0.78100        0.04725     0.7493333     20.5     5.75
        True Positive False Positive True Negative False Negative      ROCSD
  m1.1          20.25           0.25          6.00           0.25 0.05416667
  m2.1          20.00           0.50          5.50           0.50 0.05626286
  m3.1          20.00           0.50          5.50           0.50 0.03948363
  m4.1          19.50           1.00          5.50           0.50 0.06484180
  m5.1          20.25           0.25          5.00           1.25 0.06219745
  m6.1          20.25           0.25          5.75           0.25 0.03933378
  m7.1          20.00           0.50          5.50           0.50 0.03948363
  m8.1          20.00           0.50          5.25           0.50 0.05147271
  m9.1          20.00           0.50          5.50           1.00 0.07866757
  m10.1         20.00           0.50          4.75           1.00 0.04857222
             TSSSD SensitivitySD SpecificitySD Pos Pred ValueSD Neg Pred ValueSD
  m1.1  0.10833333    0.02500000    0.08350000       0.02500000       0.08350000
  m2.1  0.10092870    0.02830194    0.09641749       0.02830194       0.09002407
  m3.1  0.07896726    0.04750000    0.09641749       0.02687471       0.12500000
  m4.1  0.11034030    0.05632865    0.09641749       0.02750000       0.15542630
  m5.1  0.31429473    0.02400000    0.31564167       0.07547185       0.08350000
  m6.1  0.07866757    0.02400000    0.08350000       0.02400000       0.07150000
  m7.1  0.07896726    0.04750000    0.09641749       0.02687471       0.12500000
  m8.1  0.09960950    0.02830194    0.09641749       0.02687471       0.09641749
  m9.1  0.16947743    0.04750000    0.19225764       0.05141012       0.11100000
  m10.1 0.22596375    0.02830194    0.23570232       0.05907270       0.09641749
        PrecisionSD   RecallSD       F1SD PrevalenceSD Detection RateSD
  m1.1   0.02500000 0.02500000 0.02500000  0.011789826       0.02089657
  m2.1   0.02830194 0.02830194 0.02042058  0.005196152       0.02233644
  m3.1   0.02687471 0.04750000 0.02043486  0.005196152       0.03426368
  m4.1   0.02750000 0.05632865 0.03223223  0.005196152       0.04401799
  m5.1   0.07547185 0.02400000 0.04209810  0.017521415       0.01912023
  m6.1   0.02400000 0.02400000 0.01385641  0.005196152       0.01607016
  m7.1   0.02687471 0.04750000 0.02043486  0.005196152       0.03426368
  m8.1   0.02687471 0.02830194 0.01963628  0.013200379       0.01581139
  m9.1   0.05141012 0.04750000 0.02392175  0.011789826       0.04669315
  m10.1  0.05907270 0.02830194 0.02940947  0.018493242       0.02093442
        Detection PrevalenceSD Balanced AccuracySD AccuracySD    KappaSD
  m1.1              0.01178983          0.05400000 0.03850000 0.10850000
  m2.1              0.02760435          0.05024191 0.03144307 0.08877453
  m3.1              0.05086584          0.03929801 0.03021451 0.07874431
  m4.1              0.05150647          0.05515433 0.04817589 0.12794628
  m5.1              0.08317251          0.15699045 0.07084961 0.26572715
  m6.1              0.02760435          0.03916950 0.02165448 0.06261523
  m7.1              0.05086584          0.03929801 0.03021451 0.07874431
  m8.1              0.02414539          0.04968819 0.03024759 0.08749095
  m9.1              0.08102057          0.08485478 0.03708099 0.11516510
  m10.1             0.06000000          0.11292918 0.04804512 0.16584405
        AccuracyLowerSD AccuracyUpperSD AccuracyNullSD AccuracyPValueSD
  m1.1       0.06177648    0.0045000000    0.011789826      0.020172176
  m2.1       0.05031484    0.0041932485    0.005196152      0.017521415
  m3.1       0.04549267    0.0041932485    0.005196152      0.018006943
  m4.1       0.07007793    0.0110905365    0.005196152      0.053643111
  m5.1       0.10004332    0.0199562020    0.017521415      0.119940263
  m6.1       0.03649201    0.0005773503    0.005196152      0.005196152
  m7.1       0.04549267    0.0041932485    0.005196152      0.018006943
  m8.1       0.04600272    0.0041932485    0.013200379      0.018202564
  m9.1       0.05588306    0.0049244289    0.011789826      0.019872510
  m10.1      0.06938960    0.0110905365    0.018493242      0.050651588
        McnemarPValueSD PositiveSD NegativeSD True PositiveSD False PositiveSD
  m1.1               NA  0.5773503        0.5       0.9574271        0.5000000
  m2.1        0.0000000  0.5773503        0.0       0.8164966        0.5773503
  m3.1        0.3002221  0.5773503        0.0       0.8164966        1.0000000
  m4.1        0.3002221  0.5773503        0.0       1.2909944        1.1547005
  m5.1        0.6123545  0.5773503        0.5       0.5000000        0.5000000
  m6.1        0.0000000  0.5773503        0.0       0.5000000        0.5000000
  m7.1        0.3002221  0.5773503        0.0       0.8164966        1.0000000
  m8.1        0.0000000  0.5773503        0.5       0.8164966        0.5773503
  m9.1        0.3002221  0.5773503        0.5       0.8164966        1.0000000
  m10.1       0.4341674  0.5773503        0.5       0.8164966        0.5773503
        True NegativeSD False NegativeSD
  m1.1        0.8164966        0.5000000
  m2.1        0.5773503        0.5773503
  m3.1        0.5773503        0.5773503
  m4.1        0.5773503        0.5773503
  m5.1        2.1602469        1.8929694
  m6.1        0.5000000        0.5000000
  m7.1        0.5773503        0.5773503
  m8.1        0.5000000        0.5773503
  m9.1        1.5000000        1.1547005
  m10.1       1.2583057        1.4142136

train_sdm - independent data

Code
  i1
Output
              caretSDM           
  ...............................
  Class                         : input_sdm
  --------  Occurrences  --------
  Species Names                 : Salminus brasiliensis Araucaria angustifolia 
  Number of presences           : 76 21 
  Pseudoabsence methods         :
      Method to obtain PAs      : bioclim 
      Number of PA sets         : 10 
      Number of PAs in each set : 76 21 
  Independent Test              : TRUE (number of records =  26 )
  Data Cleaning                 : NAs, Capitals, Centroids, Geographically Duplicated, Identical Lat/Long, Institutions, Invalid, Non-terrestrial, Duplicated Cell (grid), Methods also applied in independent_test 
  --------  Predictors  ---------
  Number of Predictors          : 3 
  Predictors Names              : bio1, bio4, bio12 
  ---------  Scenarios  ---------
  Number of Scenarios           : 1 
  Scenarios Names               : current 
  -----------  Models  ----------
  Algorithms Names              : kknn 
  Variables Names               : bio1 bio4 bio12 
  Model Validation              :
      Method                    : repeatedcv 
      Number                    : 4 
      Metrics                   :
  $`Salminus brasiliensis`
    algo     ROC       TSS Sensitivity Specificity
  1 kknn 0.90775 0.7841667    0.848325    0.940825

  $`Araucaria angustifolia`
    algo       ROC       TSS Sensitivity Specificity
  1 kknn 0.9652412 0.8711842     0.97355    0.897375

  Independent Validation        :
      ROC (mean +- sd)            :  NA  +-  NA
Code
  i1$models
Output
           caretSDM        
  .........................
  Class                   : Models
  Algorithms Names        : kknn 
  Variables Names         : bio1 bio4 bio12 
  Model Validation        :
           Method          : repeatedcv 
           Number          : 4 
           Metrics         :
  $`Salminus brasiliensis`
        algo       ROC       TSS Sensitivity Specificity Pos Pred Value
  m1.1  kknn 0.9000000 0.8000000     0.90000     0.90000        0.92250
  m2.1  kknn 0.9250000 0.8500000     0.85000     1.00000        1.00000
  m3.1  kknn 0.8791667 0.7583333     0.80825     0.95000        0.95825
  m4.1  kknn 0.9458333 0.8166667     0.86675     0.95000        0.95825
  m5.1  kknn 0.9250000 0.8500000     0.85000     1.00000        1.00000
  m6.1  kknn 0.9583333 0.8583333     0.90825     0.95000        0.95825
  m7.1  kknn 0.9233333 0.7666667     0.81675     0.95000        0.95000
  m8.1  kknn 0.8791667 0.7583333     0.80825     0.95000        0.95825
  m9.1  kknn 0.8125000 0.5250000     0.81675     0.75825        0.82500
  m10.1 kknn 0.9291667 0.8583333     0.85825     1.00000        1.00000
        Neg Pred Value Precision  Recall      F1 Prevalence Detection Rate
  m1.1         0.92850   0.92250 0.90000 0.89550        0.5        0.45000
  m2.1         0.89275   1.00000 0.85000 0.90975        0.5        0.42725
  m3.1         0.87050   0.95825 0.80825 0.84725        0.5        0.40425
  m4.1         0.88675   0.95825 0.86675 0.89950        0.5        0.42975
  m5.1         0.89575   1.00000 0.85000 0.90975        0.5        0.42950
  m6.1         0.90825   0.95825 0.90825 0.93050        0.5        0.45250
  m7.1         0.83675   0.95000 0.81675 0.87225        0.5        0.40475
  m8.1         0.86450   0.95825 0.80825 0.84725        0.5        0.40250
  m9.1         0.74975   0.82500 0.81675 0.79225        0.5        0.40700
  m10.1        0.87475   1.00000 0.85825 0.92175        0.5        0.42750
        Detection Prevalence Balanced Accuracy Accuracy   Kappa AccuracyLower
  m1.1               0.52025           0.90000  0.90225 0.80350       0.57525
  m2.1               0.42725           0.92500  0.92725 0.85350       0.60950
  m3.1               0.42925           0.87925  0.87925 0.75825       0.55250
  m4.1               0.45475           0.90825  0.90450 0.81125       0.57675
  m5.1               0.42950           0.92500  0.92950 0.85525       0.61100
  m6.1               0.47500           0.92925  0.92950 0.85825       0.61100
  m7.1               0.42975           0.88325  0.87950 0.76125       0.54900
  m8.1               0.42750           0.87925  0.87725 0.75500       0.55125
  m9.1               0.54550           0.76250  0.76825 0.52375       0.43975
  m10.1              0.42750           0.92925  0.92725 0.85500       0.60300
        AccuracyUpper AccuracyNull AccuracyPValue McnemarPValue Positive Negative
  m1.1        0.99250       0.5225        0.02300     0.8700000     5.25     5.25
  m2.1        0.99325       0.5225        0.01750     0.7400000     5.25     5.25
  m3.1        0.98200       0.5000        0.04675     0.7493333     5.25     5.25
  m4.1        0.99275       0.5225        0.02400     0.8700000     5.25     5.25
  m5.1        0.99350       0.5225        0.01850     0.7400000     5.25     5.25
  m6.1        0.99350       0.5225        0.01850     1.0000000     5.25     5.25
  m7.1        0.98725       0.5225        0.03200     0.8266667     5.25     5.25
  m8.1        0.98200       0.5225        0.04925     0.7493333     5.25     5.25
  m9.1        0.93425       0.5225        0.22525     0.9207500     5.25     5.25
  m10.1       0.99800       0.5225        0.00900     1.0000000     5.25     5.25
        True Positive False Positive True Negative False Negative      ROCSD
  m1.1           4.75           0.50          4.75           0.75 0.08164966
  m2.1           4.50           0.75          5.25           0.00 0.09574271
  m3.1           4.25           1.00          5.00           0.25 0.12720281
  m4.1           4.50           1.00          5.00           0.25 0.05335937
  m5.1           4.50           0.75          5.25           0.00 0.09574271
  m6.1           4.75           0.50          5.00           0.25 0.08858455
  m7.1           4.25           1.00          5.00           0.25 0.07272475
  m8.1           4.25           1.00          5.00           0.25 0.12720281
  m9.1           4.25           1.25          4.00           1.50 0.26714367
  m10.1          4.50           0.75          5.25           0.00 0.04787136
             TSSSD SensitivitySD SpecificitySD Pos Pred ValueSD Neg Pred ValueSD
  m1.1  0.16329932    0.20000000     0.1154701       0.09002407        0.1430000
  m2.1  0.19148542    0.19148542     0.0000000       0.00000000        0.1369121
  m3.1  0.25440563    0.28332358     0.1000000       0.08350000        0.1770056
  m4.1  0.13743685    0.16316326     0.1000000       0.08350000        0.1395024
  m5.1  0.19148542    0.19148542     0.0000000       0.00000000        0.1250557
  m6.1  0.17716910    0.10679693     0.1000000       0.08350000        0.1067969
  m7.1  0.17638342    0.13731563     0.1000000       0.10000000        0.1198370
  m8.1  0.25440563    0.28332358     0.1000000       0.08350000        0.1780197
  m9.1  0.44586578    0.13731563     0.3804019       0.23629078        0.2887714
  m10.1 0.09574271    0.09577186     0.0000000       0.00000000        0.0835000
        PrecisionSD   RecallSD       F1SD PrevalenceSD Detection RateSD
  m1.1   0.09002407 0.20000000 0.10492696   0.03674235       0.10653638
  m2.1   0.00000000 0.19148542 0.11866023   0.03674235       0.11452911
  m3.1   0.08350000 0.28332358 0.18909676   0.00000000       0.14167657
  m4.1   0.08350000 0.16316326 0.08205892   0.03674235       0.06428063
  m5.1   0.00000000 0.19148542 0.11866023   0.03674235       0.12065516
  m6.1   0.08350000 0.10679693 0.08344459   0.03674235       0.04092676
  m7.1   0.10000000 0.13731563 0.09493989   0.03674235       0.03755330
  m8.1   0.08350000 0.28332358 0.18909676   0.03674235       0.13665650
  m9.1   0.23629078 0.13731563 0.15492229   0.03674235       0.06428063
  m10.1  0.00000000 0.09577186 0.05301179   0.03674235       0.03175426
        Detection PrevalenceSD Balanced AccuracySD AccuracySD    KappaSD
  m1.1              0.15329791          0.08164966 0.08177357 0.16344928
  m2.1              0.11452911          0.09574271 0.09506270 0.19039170
  m3.1              0.17016340          0.12723567 0.12723567 0.25437292
  m4.1              0.11327842          0.06883979 0.07448266 0.14550916
  m5.1              0.12065516          0.09574271 0.08802083 0.18241962
  m6.1              0.06204837          0.08844348 0.08802083 0.17731023
  m7.1              0.05994650          0.08825484 0.09136557 0.18075651
  m8.1              0.16635805          0.12723567 0.12650527 0.25317978
  m9.1              0.15649601          0.22312403 0.21238075 0.44813568
  m10.1             0.03175426          0.04784262 0.04868521 0.09712535
        AccuracyLowerSD AccuracyUpperSD AccuracyNullSD AccuracyPValueSD
  m1.1       0.11151196     0.011733144     0.02598076      0.023916521
  m2.1       0.12360286     0.012203142     0.02598076      0.025632011
  m3.1       0.14741438     0.032690468     0.00000000      0.083611702
  m4.1       0.09838149     0.010594810     0.02598076      0.027080128
  m5.1       0.11128642     0.011090537     0.02598076      0.028722813
  m6.1       0.11128642     0.011090537     0.02598076      0.028722813
  m7.1       0.11986937     0.013073510     0.02598076      0.030397368
  m8.1       0.15211481     0.032690468     0.02598076      0.082001524
  m9.1       0.18506103     0.112562205     0.02598076      0.395868981
  m10.1      0.07617524     0.001414214     0.02598076      0.005416026
        McnemarPValueSD PositiveSD NegativeSD True PositiveSD False PositiveSD
  m1.1        0.3002221        0.5        0.5       1.2583057        1.0000000
  m2.1        0.3676955        0.5        0.5       1.2909944        0.9574271
  m3.1        0.4341674        0.5        0.5       1.5000000        1.4142136
  m4.1        0.3002221        0.5        0.5       0.5773503        0.9574271
  m5.1        0.3676955        0.5        0.5       1.2909944        0.9574271
  m6.1        0.0000000        0.5        0.5       0.5000000        0.5773503
  m7.1        0.3002221        0.5        0.5       0.5000000        0.8164966
  m8.1        0.4341674        0.5        0.5       1.5000000        1.4142136
  m9.1        0.1585000        0.5        0.5       0.5000000        0.8164966
  m10.1       0.0000000        0.5        0.5       0.5773503        0.5000000
        True NegativeSD False NegativeSD
  m1.1        0.9574271        0.5773503
  m2.1        0.5000000        0.0000000
  m3.1        0.8164966        0.5000000
  m4.1        0.8164966        0.5000000
  m5.1        0.5000000        0.0000000
  m6.1        0.8164966        0.5000000
  m7.1        0.8164966        0.5000000
  m8.1        0.8164966        0.5000000
  m9.1        2.0000000        1.8929694
  m10.1       0.5000000        0.0000000

  $`Araucaria angustifolia`
        algo       ROC       TSS Sensitivity Specificity Pos Pred Value
  m1.1  kknn 0.9682018 0.8486842     0.97375     0.87500        0.96375
  m2.1  kknn 0.9747807 0.8903509     0.97350     0.91650        0.97425
  m3.1  kknn 0.9714912 0.7653509     0.97350     0.79150        0.94325
  m4.1  kknn 0.9791667 0.9451754     0.98675     0.95825        0.98750
  m5.1  kknn 0.9802632 0.8903509     0.97350     0.91650        0.97500
  m6.1  kknn 0.9451754 0.8903509     0.97350     0.91650        0.97425
  m7.1  kknn 0.9353070 0.8640351     0.94725     0.91650        0.97275
  m8.1  kknn 0.9475877 0.8951754     0.98675     0.90825        0.97425
  m9.1  kknn 0.9660088 0.8903509     0.97350     0.91650        0.97425
  m10.1 kknn 0.9844298 0.8320175     0.97350     0.85825        0.96175
        Neg Pred Value Precision  Recall      F1 Prevalence Detection Rate
  m1.1         0.93750   0.96375 0.97375 0.96700    0.76000        0.74000
  m2.1         0.92250   0.97425 0.97350 0.97350    0.76000        0.74000
  m3.1         0.92250   0.94325 0.97350 0.95625    0.75275        0.73275
  m4.1         0.95825   0.98750 0.98675 0.98675    0.76800        0.75750
  m5.1         0.92850   0.97500 0.97350 0.97350    0.76000        0.74000
  m6.1         0.92700   0.97425 0.97350 0.97350    0.75275        0.73300
  m7.1         0.85100   0.97275 0.94725 0.95975    0.76000        0.72000
  m8.1         0.95000   0.97425 0.98675 0.98025    0.76800        0.75750
  m9.1         0.91650   0.97425 0.97350 0.97350    0.76800        0.74750
  m10.1        0.91425   0.96175 0.97350 0.96700    0.77600        0.75550
        Detection Prevalence Balanced Accuracy Accuracy   Kappa AccuracyLower
  m1.1               0.77000           0.92425  0.95000 0.85975       0.78475
  m2.1               0.76000           0.94525  0.96000 0.89025       0.79875
  m3.1               0.78275           0.88275  0.93000 0.77725       0.76075
  m4.1               0.76750           0.97275  0.97950 0.94150       0.82775
  m5.1               0.76000           0.94550  0.96000 0.89000       0.79600
  m6.1               0.75300           0.94525  0.96050 0.89275       0.80075
  m7.1               0.74000           0.93200  0.94000 0.84150       0.77175
  m8.1               0.77800           0.94775  0.96925 0.90775       0.81300
  m9.1               0.76750           0.94525  0.95950 0.88675       0.79700
  m10.1              0.78625           0.91625  0.94875 0.84775       0.77775
        AccuracyUpper AccuracyNull AccuracyPValue McnemarPValue Positive Negative
  m1.1        0.99475      0.76000         0.0230     0.6533333       19     6.00
  m2.1        0.99700      0.76000         0.0150     1.0000000       19     6.00
  m3.1        0.98600      0.75275         0.0745     0.7113333       19     6.25
  m4.1        0.99950      0.76800         0.0270     1.0000000       19     5.75
  m5.1        0.99900      0.76000         0.0090     1.0000000       19     6.00
  m6.1        0.99700      0.75275         0.0135     1.0000000       19     6.25
  m7.1        0.99100      0.76000         0.0420     1.0000000       19     6.00
  m8.1        0.99725      0.76800         0.0270     1.0000000       19     5.75
  m9.1        0.99700      0.76800         0.0195     1.0000000       19     5.75
  m10.1       0.99675      0.77600         0.0355     1.0000000       19     5.50
        True Positive False Positive True Negative False Negative      ROCSD
  m1.1          18.50           0.50          5.25           0.75 0.03623402
  m2.1          18.50           0.50          5.50           0.50 0.05517432
  m3.1          18.50           0.50          5.00           1.25 0.05413307
  m4.1          18.75           0.50          5.50           0.25 0.04166667
  m5.1          18.50           0.50          5.50           0.50 0.03250254
  m6.1          18.50           0.50          5.75           0.50 0.05045449
  m7.1          18.00           1.00          5.50           0.50 0.06258010
  m8.1          18.75           0.25          5.25           0.50 0.06301305
  m9.1          18.50           0.50          5.25           0.50 0.05194175
  m10.1         18.50           0.50          4.75           0.75 0.01569783
             TSSSD SensitivitySD SpecificitySD Pos Pred ValueSD Neg Pred ValueSD
  m1.1  0.13950310    0.05250000    0.15945532       0.04571196       0.12500000
  m2.1  0.10090897    0.03059956    0.09641749       0.02975875       0.09002407
  m3.1  0.30280104    0.03059956    0.31564167       0.08206248       0.09002407
  m4.1  0.08240480    0.05250000    0.08350000       0.02500000       0.14300000
  m5.1  0.06583819    0.03059956    0.09641749       0.02886751       0.08256109
  m6.1  0.10090897    0.03059956    0.09641749       0.02975875       0.08601938
  m7.1  0.13020728    0.04286704    0.09641749       0.03148942       0.11737405
  m8.1  0.12602611    0.02650000    0.10679693       0.02975875       0.10000000
  m9.1  0.10090897    0.03059956    0.09641749       0.02975875       0.09641749
  m10.1 0.08465253    0.03059956    0.09577186       0.02553919       0.10171324
        PrecisionSD   RecallSD         F1SD PrevalenceSD Detection RateSD
  m1.1   0.04571196 0.05250000 0.0255342907   0.00000000       0.04000000
  m2.1   0.02975875 0.03059956 0.0216410105   0.00000000       0.02309401
  m3.1   0.08206248 0.03059956 0.0404423458   0.01450000       0.01889224
  m4.1   0.02500000 0.05250000 0.0266520793   0.01600000       0.02600000
  m5.1   0.02886751 0.03059956 0.0005773503   0.00000000       0.02309401
  m6.1   0.02975875 0.03059956 0.0216410105   0.01450000       0.03320643
  m7.1   0.03148942 0.04286704 0.0347311100   0.00000000       0.03265986
  m8.1   0.02975875 0.02650000 0.0253294953   0.01600000       0.00500000
  m9.1   0.02975875 0.03059956 0.0216410105   0.01600000       0.01892969
  m10.1  0.02553919 0.03059956 0.0133416641   0.01847521       0.02968164
        Detection PrevalenceSD Balanced AccuracySD AccuracySD     KappaSD
  m1.1              0.06831301          0.06984447 0.03829708 0.108149202
  m2.1              0.03265986          0.05057915 0.03265986 0.089540959
  m3.1              0.09304255          0.15129965 0.06831301 0.246935045
  m4.1              0.03771825          0.04112582 0.03960955 0.105880436
  m5.1              0.04618802          0.03290897 0.00000000 0.006928203
  m6.1              0.04482559          0.05057915 0.03267517 0.089893919
  m7.1              0.02309401          0.06525846 0.05163978 0.135411718
  m8.1              0.02103965          0.06283510 0.03960955 0.120311748
  m9.1              0.02217356          0.05057915 0.03267517 0.089514896
  m10.1             0.04759814          0.04236646 0.02118765 0.068451321
        AccuracyLowerSD AccuracyUpperSD AccuracyNullSD AccuracyPValueSD
  m1.1       0.05846580     0.005500000     0.00000000       0.02103965
  m2.1       0.05031484     0.004690416     0.00000000       0.01773885
  m3.1       0.09660702     0.021150256     0.01450000       0.11699715
  m4.1       0.06371290     0.004856267     0.01600000       0.04681880
  m5.1       0.00000000     0.000000000     0.00000000       0.00000000
  m6.1       0.05032809     0.004690416     0.01450000       0.01864582
  m7.1       0.07513710     0.011575837     0.00000000       0.05290243
  m8.1       0.06371290     0.004856267     0.01600000       0.04681880
  m9.1       0.05056349     0.004690416     0.01600000       0.01799074
  m10.1      0.03200391     0.004500000     0.01847521       0.04186884
        McnemarPValueSD PositiveSD NegativeSD True PositiveSD False PositiveSD
  m1.1        0.3002221          0  0.0000000       1.0000000        1.0000000
  m2.1        0.0000000          0  0.0000000       0.5773503        0.5773503
  m3.1        0.4999853          0  0.5000000       0.5773503        0.5773503
  m4.1        0.3676955          0  0.5000000       1.0000000        1.0000000
  m5.1        0.0000000          0  0.0000000       0.5773503        0.5773503
  m6.1        0.0000000          0  0.5000000       0.5773503        0.5773503
  m7.1        0.0000000          0  0.0000000       0.8164966        0.8164966
  m8.1        0.0000000          0  0.5000000       0.5000000        0.5000000
  m9.1        0.0000000          0  0.5000000       0.5773503        0.5773503
  m10.1       0.0000000          0  0.5773503       0.5773503        0.5773503
        True NegativeSD False NegativeSD
  m1.1        0.9574271        0.9574271
  m2.1        0.5773503        0.5773503
  m3.1        2.1602469        1.8929694
  m4.1        0.5773503        0.5000000
  m5.1        0.5773503        0.5773503
  m6.1        0.9574271        0.5773503
  m7.1        0.5773503        0.5773503
  m8.1        0.9574271        0.5773503
  m9.1        0.5000000        0.5773503
  m10.1       0.9574271        0.5000000


Try the caretSDM package in your browser

Any scripts or data that you put into this service are public.

caretSDM documentation built on Aug. 29, 2025, 5:17 p.m.