Nothing
#' A toy data set with a numbat shape hidden among noise variables
#'
#' There are 7 variables (x1-x7) and 2,100 observations.
#' Variables 4 and 7 have the numbat. The rest are
#' noise. Group A has the numbat, and group B is all noise.
#'
#' @docType data
#' @name numbat
NULL
#' Data from Anscombe's famous example in tidy format
#'
#' All variables and pairs of variables have same
#' summary statistics but are very different data,
#' as can be seen by visualisation.
#'
#' @format A tibble with 44 observations and 3 variables
#' \describe{
#' \item{set}{label of the data set, each set has 11 observations}
#' \item{x}{variable for horizontal axis}
#' \item{y}{variable for vertical axis}
#' }
#' @docType data
#' @name anscombe_tidy
NULL
#' datasaurus_dozen data
#'
#' From the datasauRus package. A modern update of Anscombe.
#' All plots have same x and y mean, variance and correlation,
#' but look different visually.
#'
#' @format A tibble with 1,846 observations and 3 variables
#' \describe{
#' \item{dataset}{label of data set}
#' \item{x}{variable for horizontal axis}
#' \item{y}{variable for vertical axis}
#' }
#'
#' @docType data
#' @name datasaurus_dozen
NULL
#' Data from Anscombe's famous example in tidy wide format
#'
#' All variables and pairs of variables have same
#' summary statistics but are very different data,
#' as can be seen by visualisation.
#'
#' @format A tibble with 142 observations and 26 variables
#' \describe{
#' \item{away_x, away_y}{x and y variables for away data}
#' \item{bullseye_x, bullseye_y}{x and y variables for bullseye data}
#' \item{circle_x, circle_y}{x and y variables for circle data}
#' \item{dino_x, dino_y}{x and y variables for dino data}
#' \item{dots_x, dots_y}{x and y variables for dots data}
#' \item{h_lines_x, h_lines_y}{x and y variables for h_lines data}
#' \item{high_lines_x, high_lines_y}{x and y variables for high_lines data}
#' \item{slant_down_x, slant_down_y}{x and y variables for slant_down data}
#' \item{slant_up_x, slant_up_y}{x and y variables for slant_up data}
#' \item{star_x, star_y}{x and y variables for star data}
#' \item{v_lines_x, v_lines_y}{x and y variables for v_lines data}
#' \item{wide_lines_x, wide_lines_y}{x and y variables for wide_lines data}
#' \item{star_x, star_y}{x and y variables for star data}
#' \item{x_shape_x, x_shape_y}{x and y variables for x_shape data}
#' }
#'
#' @docType data
#' @name datasaurus_dozen_wide
#' @rdname datasaurus_dozen
NULL
#' Simulated data with special features
#'
#' Simulated data with common features that might
#' be seen in 2D data. Variable are feature, x, y.
#'
#' @format A tibble with 1,013 observations and 3 variables,
#' and 15 different patterns
#' \describe{
#' \item{feature}{label of data set}
#' \item{x}{variable for horizontal axis}
#' \item{y}{variable for vertical axis}
#' }
#'
#' @docType data
#' @name features
NULL
#' Parkinsons data from UCI machine learning archive
#'
#' Biomedical voice measurements from 31 people,
#' 23 with Parkinson's disease (PD). Each column
#' in the table is a particular voice measure, and
#' each row corresponds one of 195 voice recording
#' from these individuals ("name" column). The main
#' aim of the data is to discriminate healthy people
#' from those with PD, according to "status" column
#' which is set to 0 for healthy and 1 for PD.
#'
#' The data is available at [The UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/Parkinsons)
#' in ASCII CSV format. The rows of the CSV file contain
#' an instance corresponding to one voice recording.
#' There are around six recordings per patient, the name
#' of the patient is identified in the first column.
#'
#' The data are originally analysed in:
#' Max A. Little, Patrick E. McSharry, Eric J. Hunter, Lorraine O. Ramig (2008),
#' 'Suitability of dysphonia measurements for telemonitoring of Parkinson's disease',
#' IEEE Transactions on Biomedical Engineering.
#'
#' @format A tibble with 1,013 observations and 3 variables
#' \describe{
#' \item{name}{ASCII subject name and recording number}
#' \item{`MDVP:Fo(Hz)`}{Average vocal fundamental frequency}
#' \item{`MDVP:Fhi(Hz)`}{Maximum vocal fundamental frequency}
#' \item{`MDVP:Flo(Hz)`}{Minimum vocal fundamental frequency}
#' \item{`MDVP:Jitter`,`MDVP:Jitter(Abs)`,`MDVP:RAP`,`MDVP:PPQ`,`Jitter:DDP`}{Several measures of variation in fundamental frequency}
#' \item{`MDVP:Shimmer`,`MDVP:Shimmer(dB)`,`Shimmer:APQ3`,`Shimmer:APQ5`,`MDVP:APQ`,`Shimmer:DDA`}{Several measures of variation in amplitude}
#' \item{`NHR`,`HNR`}{Two measures of ratio of noise to tonal components in the voice}
#' \item{`status`}{Health status of the subject (one) - Parkinson's, (zero) - healthy}
#' \item{`RPDE`,`D2`}{Two nonlinear dynamical complexity measures}
#' \item{`DFA`}{Signal fractal scaling exponent}
#' \item{`spread1`,`spread2`,`PPE`}{Three nonlinear measures of fundamental frequency variation}
#' }
#'
#' @docType data
#' @name pk
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.