trial_ocs | R Documentation |
Given the trial specific design parameters, performs a number of simulations of the trial and saves the result in an Excel file
trial_ocs( iter, coresnum = 1, save = FALSE, path = NULL, filename = NULL, ret_list = FALSE, ret_trials = FALSE, plot_ocs = FALSE, export = NULL, ... )
iter |
Number of program simulations that should be performed |
coresnum |
How many cores should be used for parallel computing |
save |
Indicator whether simulation results should be saved in an Excel file |
path |
Path to which simulation results will be saved; if NULL, then save to current path |
filename |
Filename of saved Excel file with results; if NULL, then name will contain design parameters |
ret_list |
Indicator whether function should return list of results |
ret_trials |
Indicator whether individual trial results should be saved as well |
plot_ocs |
Should OCs stability plots be drawn? |
export |
Should any other variables be exported to the parallel tasks? |
... |
All other design parameters for chosen program |
List containing: Responses and patients on experimental and control arm, total treatment successes and failures and final p-value
random <- TRUE rr_comb1 <- 0.25 prob_comb1_rr <- 1 rr_comb2 <- 0.20 prob_comb2_rr <- 1 rr_plac1 <- 0.10 prob_plac1_rr <- 1 rr_plac2 <- 0.10 prob_plac2_rr <- 1 correlation <- 0.8 cohorts_start <- 2 cohorts_max <- 5 safety_prob <- 0 sharing_type <- "concurrent" sr_drugs_pos <- 5 sr_first_pos <- FALSE n_fin <- 100 stage_data <- TRUE cohort_random <- 0.01 cohort_offset <- 0 cohorts_sim <- Inf random_type <- "absolute" missing_prob <- 0.2 cohort_fixed <- 5 hist_lag <- 48 analysis_times <- c(0.5, 0.75, 1) accrual_type <- "fixed" accrual_param <- 9 time_trend <- 0.001 composite <- "or" # Comparison IA1 Bayes_Sup11 <- matrix(nrow = 2, ncol = 2) Bayes_Sup11[1,] <- c(0.00, 0.95) Bayes_Sup11[2,] <- c(0.10, 0.80) # Comparison IA2 Bayes_Sup12 <- matrix(nrow = 2, ncol = 2) Bayes_Sup12[1,] <- c(0.00, 0.95) Bayes_Sup12[2,] <- c(0.10, 0.80) # Comparison IA3 Bayes_Sup13 <- matrix(nrow = 2, ncol = 2) Bayes_Sup13[1,] <- c(0.00, 0.95) Bayes_Sup13[2,] <- c(0.10, 0.80) Bayes_Sup1 <- Bayes_Sup2 <- list(list(Bayes_Sup11), list(Bayes_Sup12), list(Bayes_Sup13)) ocs <- trial_ocs( n_fin = n_fin, random_type = random_type, composite = composite, rr_comb1 = rr_comb1, rr_comb2 = rr_comb2, rr_plac1 = rr_plac1, rr_plac2 = rr_plac2, random = random, prob_comb1_rr = prob_comb1_rr, prob_comb2_rr = prob_comb2_rr, prob_plac1_rr = prob_plac1_rr, prob_plac2_rr = prob_plac2_rr, stage_data = stage_data, cohort_random = cohort_random, cohorts_max = cohorts_max, sr_drugs_pos = sr_drugs_pos, sharing_type = sharing_type, correlation = correlation, safety_prob = safety_prob, Bayes_Sup1 = Bayes_Sup1, Bayes_Sup2 = Bayes_Sup2, cohort_offset = cohort_offset, sr_first_pos = sr_first_pos, missing_prob = missing_prob, cohort_fixed = cohort_fixed, accrual_type = accrual_type, accrual_param = accrual_param, hist_lag = hist_lag, analysis_times = analysis_times, time_trend = time_trend, cohorts_start = cohorts_start, cohorts_sim = cohorts_sim, iter = 2, coresnum = 1, save = FALSE, ret_list = TRUE, plot_ocs = TRUE )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.