Nothing
#' Synthetic Data for Illustration
#'
#' A randomly generated dataset containing 1000 rows and 9 columns with no
#' missing values.
#'
#' @usage sdata
#'
#' @format A data frame containing the following variables. The data are
#' provided only for explanatory purposes. The mediators are assumed to be
#' independent of each other.
#' \describe{
#' \item{C.num:}{ A quantitative covariate.}
#' \item{C.bin:}{ A binary covariates with a value of 0 or 1.}
#' \item{R:}{ A group indicator with four levels.}
#' \item{X:}{ A quantitative intermediate confounder between a mediator and the outcome.}
#' \item{M.num:}{ A quantitative mediator.}
#' \item{M.bin:}{ A binary mediator with a value of 0 or 1.}
#' \item{M.cat:}{ A categorical mediator with three levels.}
#' \item{Y.num:}{ A quantitative outcome.}
#' \item{Y.bin:}{ A binary outcome with a value of 0 or 1.}
#' }
#'
#' @details Note that all the variables are randomly generated using the dataset
#' used in Park et al. (2024).
#'
#' @references Park, S., Kang, S., and Lee, C. (2024). "Choosing an optimal method for causal
#' decomposition analysis with continuous outcomes: A review and simulation study",
#' Sociological methodology, 54(1), 92-117.
#'
#' @keywords datasets
"sdata"
#' Synthetic Data Generated Based on the Midlife Development in the U.S. (MIDUS) Study
#'
#' This is a synthetic dataset that includes variables from the Midlife Development
#' in the U.S. (MIDUS) study. It has been artificially generated based on the actual
#' MIDUS data, which is not publicly available due to confidentiality concerns.
#' The synthetic data set consists of 1948 rows and 9 columns, with no missing values.
#'
#' @usage sMIDUS
#'
#' @format A data frame containing the following variables.
#' \describe{
#' \item{health:}{ cardiovascular health score.}
#' \item{racesex:}{ race-gender groups with four levels (1: White men, 2: White women, 3: Black men, 4: Black women).}
#' \item{lowchildSES:}{ socioeconomic status (SES) in the childhood.}
#' \item{abuse:}{ adverse experience in the childhood.}
#' \item{edu:}{ education level.}
#' \item{age:}{ age.}
#' \item{stroke:}{ genetic vulnerability with a value of 0 or 1.}
#' \item{T2DM:}{ genetic vulnerability with a value of 0 or 1.}
#' \item{heart:}{ genetic vulnerability with a value of 0 or 1.}
#' }
#'
#' @details Note that all the variables are fabricated using the actual MIDUS data
#' used in Park et al. (2023).
#'
#' @references Park, S., Kang, S., Lee, C., & Ma, S. (2023). Sensitivity analysis for causal
#' decomposition analysis: Assessing robustness toward omitted variable bias,
#' Journal of Causal Inference, 11(1), 20220031.
#'
#' @keywords datasets
"sMIDUS"
#' Synthetic Data for illustrating optimal treatment regimes and individualized effects
#'
#' A randomly generated dataset containing 2000 cases 7 columns with no missing values.
#' The intermediate confounders are assumed to be independent of each other.
#'
#' @usage idata
#'
#' @format A data frame containing the following variables. The data are provided only for
#' explanatory purposes.
#' \describe{
#' \item{Y:}{ A continuous outcome variable.}
#' \item{R:}{ A binary group indicator with a value of 0 (reference) and 1 (comparison).}
#' \item{M:}{ A binary risk factor with a value of 0 (not treated/received) and 1(treated/received).}
#' \item{X1:}{ First continuous intermediate confounder.}
#' \item{X2:}{ Second continuous intermediate confounder.}
#' \item{X3:}{ Third continuous intermediate confounder.}
#' \item{C:}{ A continuous baseline covariate.}
#' }
#'
#' @details Note that all the variables are randomly generated using the simulation setting
#' in Park, S., Kang, S., & Lee, C. (2025).
#'
#' @references
#' Park, S., Kang, S., & Lee, C. (2025). Simulation-Based Sensitivity Analysis in
#' Optimal Treatment Regimes and Causal Decomposition with Individualized Interventions.
#' arXiv preprint arXiv:2506.19010.
#'
#' @keywords datasets
"idata"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.