grad_full_likelihood: Numerical gradient of the full log-likelihood function of the...

Description Usage Arguments Value Note

Description

This function computes numerical gradient of the full log-likelihood function of the (E)DCC-GARCH(1,1) model with respect to its parameters.

Usage

1
    grad.dcc.full(a, A, B, dcc.para, dvar, d=1e-5, model)

Arguments

a

a constant vector in the vector GARCH equation (N \times 1)

A

an ARCH parameter matrix in the vector GARCH equation (N \times N)

B

a GARCH parameter matrix in the vector GARCH equation (N \times N)

dcc.para

a vector of the DCC parameters (2 \times 1)

dvar

a matrix of the data used for estimating the (E)DCC-GARCH model (T \times N)

d

a step size for computing numerical gradient

model

a character string describing the model. "diagonal" for the diagonal model and "extended" for the extended (full ARCH and GARCH parameter matrices) model

Value

a matrix of partial derivatives (T \times npar)

Note

this function is currently not in use.


ccgarch documentation built on May 29, 2017, 12:58 p.m.