| GNPC | R Documentation |
Attribute profile estimation using the general nonparametric classification method (GNPC; Chiu, Sun, & Bian, 2018).
The GNPC can be considered as a robust alternative to the parametric G-DINA model with low sample sizes.
The AlphaNP function from the NPCD package (Zheng & Chiu, 2019; Chiu, Sun, & Bian, 2018) using weighted Hamming distances is used to initiate the procedure.
GNPC(
dat,
Q,
initiate = "AND",
min.change = 0.001,
maxitr = 1000,
verbose = TRUE
)
dat |
A N individuals x J items ( |
Q |
A J items x K attributes Q-matrix ( |
initiate |
Should the conjunctive ( |
min.change |
Minimum proportion of modified attribute profiles to use as a stopping criterion. Default is .001. |
maxitr |
Maximum number of iterations. Default is 1000. |
verbose |
Print information after each iteration. Default is |
GNPC returns an object of class GNPC.
alpha.estEstimated attribute profiles (matrix).
loss.matrixThe distances between the weighted ideal responses from each latent class (rows) and examinees' observed responses (columns) (matrix).
eta.wThe weighted ideal responses for each latent class (rows) on each item (columns) (matrix).
wThe estimated weights, used to compute the weighted ideal responses (matrix).
n.iteNumber of iterations required to achieve convergence (double).
hist.changeProportion of modified attribute profiles in each iteration (vector).
specificationsFunction call specifications (list).
Pablo Nájera, Universidad Pontificia Comillas
Chiu, C.-Y., & Douglas, J. (2013). A nonparametric approach to cognitive diagnosis by proximity to ideal response patterns. Journal of Classification, 30, 225-250. DOI: 10.1007/s00357-013-9132-9
Chiu, C.-Y., Sun, Y., & Bian, Y. (2018). Cognitive diagnosis for small education programs: The general nonparametric classification method. Psychometrika, 83, 355-375. DOI: 10.1007/s11336-017-9595-4
Zheng, Y., & Chiu, C.-Y. (2019). NPCD: Nonparametric methods for cognitive diagnosis. R package version 1.0-11. https://cran.r-project.org/web/packages/NPCD/.
library(GDINA)
Q <- sim30GDINA$simQ # Q-matrix
K <- ncol(Q)
J <- nrow(Q)
set.seed(123)
GS <- data.frame(guessing = rep(0.1, J), slip = rep(0.1, J))
sim <- simGDINA(200, Q, GS)
simdat <- sim$dat # Simulated data
simatt <- sim$attribute # Generating attributes
fit.GNPC <- GNPC(simdat, Q) # Apply the GNPC method
ClassRate(fit.GNPC$alpha.est, simatt) # Check classification accuracy
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.