shrink_eigen: Nonlinear shrinkage of sample eigenvalues

Description Usage Arguments Value Examples

Description

shrink_eigen shrinks the sample eigenvalues.

Usage

1
shrink_eigen(d, lambda, alpha, n)

Arguments

d

Vector of sample eigenvalues to shrink. These must be nonnegative.

lambda

Regularization parameter controling amount of shrinkage towards the target.

alpha

Parameter that controls mixture between the trace and inverse trace penalties.

n

The number of observations.

Value

Vector of shrunken eigenvalues.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
set.seed(12345)
nLambda <- 100
lambda <- 10**seq(-2,2,length.out=nLambda)
alpha <- 0.5
n <- 10
p <- 5
d <- sort(2*runif(p))
e <- shrink_eigen(d,lambda,alpha,n)

## Plot regularization paths of eigenvalues
matplot(x=log10(lambda),y=t(e),type='l',ylab='shrunken eigenvalue')

cernn documentation built on May 2, 2019, 6 a.m.

Related to shrink_eigen in cernn...