View source: R/reconstructData.R
reconstructIndicators | R Documentation |
The reconstruction formula is:
1^{x}(t) = p^x(t) ( 1 + \sum_{i\geq 1} z_i*a_i^x(t)
)
with z_i
, the i-th principal component,
encoding a_i^x = \sum_j \alpha_{(x, j)} * \phi_j(t)
and p^x(t) = 1 / (\sum_{i \geq 1} a_i^x(t)^2)
reconstructIndicators(
x,
nComp = NULL,
timeValues = NULL,
propMinEigenvalues = 1e-04
)
x |
output of |
nComp |
number of components to use for the reconstruction. By default, all are used. |
timeValues |
vector containing time values at which compute the indicators. If NULL, the time values from the data |
propMinEigenvalues |
Only if nComp = NULL. Minimal proportion used to estimate the number of non-null eigenvalues |
a data.frame with columns: time, id, state1, ..., stateK, state. state1 contains the estimated indicator values for the first state. state contains the state with the maximum values of all indicators
Quentin Grimonprez
plotIndicatorsReconstruction
set.seed(42)
# Simulate the Jukes-Cantor model of nucleotide replacement
K <- 3
Tmax <- 1
d_JK <- generate_Markov(n = 100, K = K, Tmax = Tmax)
d_JK2 <- cut_data(d_JK, Tmax)
# create basis object
m <- 20
b <- create.bspline.basis(c(0, Tmax), nbasis = m, norder = 4)
# compute encoding
encoding <- compute_optimal_encoding(d_JK2, b, computeCI = FALSE, nCores = 1)
indicators <- reconstructIndicators(encoding)
# we plot the first path and its reconstructed indicators
iInd <- 3
plotData(d_JK2[d_JK2$id == iInd, ])
plotIndicatorsReconstruction(indicators, id = iInd)
# the column state contains the state associated with the greatest indicator.
# So, the output can be used with plotData function
plotData(remove_duplicated_states(indicators[indicators$id == iInd, ]))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.