View source: R/cglasso_S3methods.R
| predict | R Documentation |
Obtains predictions from an R object inheriting class ‘cglasso’.
## S3 method for class 'cglasso'
predict(object, type = c("B", "mu", "Sigma", "Theta"), X.new, lambda.new, rho.new,
...)
## S3 method for class 'cggm'
predict(object, X.new, ...)
object |
an R object inheriting class ‘ |
type |
a description of prediction required. |
X.new |
matrix of new values for |
lambda.new |
value of the tuning parameter |
rho.new |
value of the tuning parameter |
... |
further arguments passed to or from other methods. |
If object has S3 class ‘cglasso’, then for a new pair of the tuning parameters \lambda and \rho, the predict function can be used to predict the estimate of the regression coefficient matrix (‘type = "B"’), the estimate of the covariance matrix (‘type = "Sigma"’) or the estimate of the precision matrix (‘type = "Theta"’). If X.new is missing and ‘type = "mu"’, then the predict function returns the predicted values using the matrix of predictors X, otherwise the predicted fitted values are computed using the matrix X.new.
For a new pair of the tuning parameters \lambda and \rho, the predicted values are computed using a bilinear interpolation.
If the object has S3 class ‘cggm’, then the predict function returns only the predicted fitted values using the argument X.new.
The matrix of predicted values.
Luigi Augugliaro (luigi.augugliaro@unipa.it)
Model-fitting function cglasso and the other accessor functions coef.cglasso, fitted.cglasso, residuals.cglasso and impute.
set.seed(123)
# Y ~ N(0, Sigma) and probability of left/right censored values equal to 0.05
n <- 100L
p <- 3L
rho <- 0.3
Sigma <- outer(1L:p, 1L:p, function(i, j) rho^abs(i - j))
Z <- rcggm(n = n, Sigma = Sigma, probl = 0.05, probr = 0.05)
out <- cglasso(. ~ ., data = Z)
rho.new <- mean(out$rho)
Theta.pred <- predict(out, rho.new = rho.new, type = "Theta")
Theta.pred
# Y ~ N(b0 + XB, Sigma) and probability of left/right censored values equal to 0.05
n <- 100L
p <- 3L
q <- 2
b0 <- runif(p)
B <- matrix(runif(q * p), nrow = q, ncol = p)
X <- matrix(rnorm(n * q), nrow = n, ncol = q)
rho <- 0.3
Sigma <- outer(1L:p, 1L:p, function(i, j) rho^abs(i - j))
Z <- rcggm(n = n, b0 = b0, X = X, B = B, Sigma = Sigma, probl = 0.05, probr = 0.05)
out <- cglasso(. ~ ., data = Z)
rho.new <- mean(out$rho)
lambda.new <- mean(out$lambda)
Theta.pred <- predict(out, lambda.new = lambda.new, rho.new = rho.new, type = "Theta")
Theta.pred
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.