View source: R/test.change.point.copula.BKRS.R
| test.change.point.copula.BKRS | R Documentation | 
This function compute the Cramer-von Mises and Kolmogorov-Smirnov test statistics based on the new sequential process of Bucher et al (2014), using multipliers and parallel computing. Two methods of bootstrapping are used: non-sequential (fastest) and sequential. Both methods yields basically the same P-valueas.
test.change.point.copula.BKRS(
  x,
  N = 1000,
  n_cores = 2,
  method = "nonseq",
  est = FALSE
)
x | 
 (n x d) matrix of data (observations or pseudo-observations, including residuals), d >=2  | 
N | 
 number of multipliers samples to compute the P-value  | 
n_cores | 
 number of cores for parallel computing (default = 2)  | 
method | 
 'nonseq' (default) or 'seq'  | 
est | 
 if TRUE, tau is estimated (default = FALSE)  | 
CVM | 
 Cramer-von Mises statistic  | 
KS | 
 Kolmogorov-Smirnov statistic  | 
pvalueCVM | 
 Pvalue for the Cramer-von Mises statistic  | 
pvalueKS | 
 Pvalue for theKolmogorov-Smirnov statistic  | 
tauCVM | 
 Estimated changepoint using the Cramer-von Mises statistic  | 
tauKS | 
 Estimated changepoint using the Kolmogorov-Smirnov statistic  | 
Bouchra R Nasri and Bruno N Remillard, August 6, 2020
Nasri, B. R. Remillard, B., & Bahraoui, T. (2022). Change-point problems for multivariate time series using pseudo-observations, J. Multivariate Anal., 187, 104857.
Bucher, A., Kojadinovic, I., Rohmer, T., & Segers, J. (2014). Detecting changes in cross-sectional dependence in multivariate time series, J. Multiv. Anal., 132, 111–128.
x<-matrix(rnorm(100),ncol=2)
out = test.change.point.copula.BKRS(x)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.