WBS.nonpar.RDPG | R Documentation |
Perform wild binary segmentation for dependent dynamic random dot product graph models.
WBS.nonpar.RDPG(data_mat, lowerdiag = FALSE, d, Alpha, Beta, delta)
data_mat |
A |
lowerdiag |
A |
d |
A |
Alpha |
A |
Beta |
A |
delta |
A positive |
An object of class
"BS", which is a list
with the following structure:
S |
A vector of estimated change point locations (sorted in strictly increasing order). |
Dval |
A vector of values of CUSUM statistic. |
Level |
A vector representing the levels at which each change point is detected. |
Parent |
A matrix with the starting indices on the first row and the ending indices on the second row. |
Oscar Hernan Madrid Padilla, Haotian Xu
Padilla, Yu and Priebe (2019) <arxiv:1911.07494>.
thresholdBS
for obtaining change points estimation, tuneBSnonparRDPG
for a tuning version.
### generate data p = 20 # number of nodes n = 50 # sample size for each segment lat_dim_num = 5 # number of latent dimensions set.seed(1) x_mat = matrix(runif(p*lat_dim_num), nrow = p, ncol = lat_dim_num) x_tilde_mat = matrix(runif(p*lat_dim_num), nrow = p, ncol = lat_dim_num) y_mat = rbind(x_tilde_mat[1:floor(p/4),], x_mat[(floor(p/4)+1):p,]) rdpg1 = simu.RDPG(x_mat, n, symm = TRUE, self = FALSE) rdpg2 = simu.RDPG(y_mat, n, symm = TRUE, self = FALSE) data1_mat = rdpg1$obs_mat data2_mat = rdpg2$obs_mat data_mat = cbind(data1_mat, data2_mat) ### detect change points M = 30 # number of random intervals for WBS d = 10 # parameter for scaled PCA algorithm delta = 5 intervals = WBS.intervals(M = M, lower = 1, upper = ncol(data_mat)) WBS_result = WBS.nonpar.RDPG(data_mat, lowerdiag = TRUE, d, Alpha = intervals$Alpha, Beta = intervals$Beta, delta)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.