Nothing
#' changepoints-package: A Collections of Change-Point Detection Methods
#'
#' Performs a series of offline and/or online change-point detection algorithms for 1) univariate mean; 2) univariate polynomials; 3) univariate and multivariate nonparametric settings; 4) high-dimensional covariances; 5) high-dimensional networks with and without missing values; 6) high-dimensional linear regression models; 7) high-dimensional vector autoregressive models; 8) high-dimensional self exciting point processes; 9) dependent dynamic nonparametric random dot product graphs; 10) univariate mean against adversarial attacks. For more informations, see Wang et al. (2020) <arXiv:1810.09498>; Yu et al. (2020) <arXiv:2006.03283>; Yu and Chatterjee (2020) <arXiv:2007.09910>; Padilla et al. (2021) <arXiv:1905.10019>; Padilla et al. (2019) <arXiv:1910.13289>; Wang et al. (2021) <arXiv:1712.09912>; Wang et al. (2018) <arXiv:1809.09602>; Padilla et al. (2019) <arXiv:1911.07494>; Yu et al. (2021) <arXiv:2101.05477>; Rinaldo et al. (2020) <arXiv:2010.10410>; Wang et al. (2019) <arXiv:1909.06359>; Wang et al. (2020) <arXiv:2006.03572>; Dubey et al. (2021) <arXiv:2110.06450>; Li and Yu (2021) <arXiv:2105.10417>.
#'
#' @docType package
#' @aliases changepoints-package
#' @import stats gglasso glmnet ks MASS data.tree Rcpp
#' @importFrom utils setTxtProgressBar txtProgressBar
#' @useDynLib changepoints
#' @name changepoints
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.