Nothing
Code
overview(numeric(), hist = TRUE)
Output
obs: 0
cols: NA
----- Numeric -----
col n_missng p_complt n_unique mean p0 p25 p50 p75 p100 iqr sd hist
1 x NA NA NA NA NA NA NA NA NA NA NA
Code
overview(numeric(), hist = FALSE)
Output
obs: 0
cols: NA
----- Numeric -----
col n_missng p_complt n_unique mean p0 p25 p50 p75 p100 iqr sd
1 x NA NA NA NA NA NA NA NA NA NA NA
Code
overview(airquality, hist = FALSE)
Output
obs: 153
cols: 6
----- Numeric -----
col n_missng p_complt n_unique mean p0 p25 p50 p75 p100
1 Ozone 37 0.76 67 42.13 1 18 31.5 63.25 168
2 Solar.R 7 0.95 117 185.93 7 115.75 205 258.75 334
3 Wind 0 1 31 9.96 1.7 7.4 9.7 11.5 20.7
4 Temp 0 1 40 77.88 56 72 79 85 97
5 Month 0 1 5 6.99 5 6 7 8 9
6 Day 0 1 31 15.8 1 8 16 23 31
iqr sd
1 45.25 32.99
2 143 90.06
3 4.1 3.52
4 13 9.47
5 2 1.42
6 15 8.86
Code
overview(iris, hist = FALSE)
Output
obs: 150
cols: 5
----- Numeric -----
col n_missng p_complt n_unique mean p0 p25 p50 p75 p100 iqr sd
1 Sepal.Length 0 1 35 5.84 4.3 5.1 5.8 6.4 7.9 1.3 0.83
2 Sepal.Width 0 1 23 3.06 2 2.8 3 3.3 4.4 0.5 0.44
3 Petal.Length 0 1 43 3.76 1 1.6 4.35 5.1 6.9 3.5 1.77
4 Petal.Width 0 1 22 1.2 0.1 0.3 1.3 1.8 2.5 1.5 0.76
----- Categorical -----
col n_missng p_complt n_unique n_levels min max
1 Species 0 1 3 3 setosa virginica
Code
overview(iris2, hist = FALSE)
Output
obs: 100
cols: 7
----- Logical -----
col n_missng p_complt n_true n_false p_true
1 large 0 1 24 76 0.24
----- Numeric -----
col n_missng p_complt n_unique mean p0 p25 p50 p75 p100 iqr sd
1 Sepal.Length 0 1 28 5.47 4.3 5 5.4 5.9 7 0.9 0.64
2 Sepal.Width 0 1 23 3.1 2 2.8 3.05 3.4 4.4 0.6 0.48
3 Petal.Length 0 1 28 2.86 1 1.5 2.45 4.32 5.1 2.83 1.45
4 Petal.Width 0 1 15 0.79 0.1 0.2 0.8 1.3 1.8 1.1 0.57
----- Categorical -----
col n_missng p_complt n_unique n_levels min max
1 Species 0 1 2 3 setosa versicolor
2 Species2 0 1 2 NA setosa versicolor
Code
overview(warpbreaks, hist = FALSE)
Output
obs: 54
cols: 3
----- Numeric -----
col n_missng p_complt n_unique mean p0 p25 p50 p75 p100 iqr sd
1 breaks 0 1 31 28.15 10 18.25 26 34 70 15.75 13.2
----- Categorical -----
col n_missng p_complt n_unique n_levels min max
1 wool 0 1 2 2 A B
2 tension 0 1 3 3 L H
Code
overview(ToothGrowth, hist = FALSE)
Output
obs: 60
cols: 3
----- Numeric -----
col n_missng p_complt n_unique mean p0 p25 p50 p75 p100 iqr sd
1 len 0 1 43 18.81 4.2 13.07 19.25 25.27 33.9 12.2 7.65
2 dose 0 1 3 1.17 0.5 0.5 1 2 2 1.5 0.63
----- Categorical -----
col n_missng p_complt n_unique n_levels min max
1 supp 0 1 2 2 OJ VC
Code
overview(df)
Output
obs: 25
cols: 3
----- Time-Series -----
col n_missng p_complt n_unique mean p0 p25 p50 p75 p100 iqr
1 y 0 1 25 0.053 -2.53 -0.44 0.24 0.82 1.59 1.26
2 x 0 1 25 0.053 -2.53 -0.44 0.24 0.82 1.59 1.26
3 z_Series 1 0 1 25 0.053 -2.53 -0.44 0.24 0.82 1.59 1.26
4 z_Series 2 0 1 25 0.053 -2.53 -0.44 0.24 0.82 1.59 1.26
5 z_Series 3 0 1 25 0.053 -2.53 -0.44 0.24 0.82 1.59 1.26
6 z_Series 4 0 1 25 0.053 -2.53 -0.44 0.24 0.82 1.59 1.26
7 z_Series 5 0 1 25 0.053 -2.53 -0.44 0.24 0.82 1.59 1.26
sd hist grwth_rt
1 1.15 ▂▃▅▆▇ -14.38%
2 1.15 ▂▃▅▆▇ -14.38%
3 1.15 ▂▃▅▆▇ -14.38%
4 1.15 ▂▃▅▆▇ -14.38%
5 1.15 ▂▃▅▆▇ -14.38%
6 1.15 ▂▃▅▆▇ -14.38%
7 1.15 ▂▃▅▆▇ -14.38%
Code
overview(ts(matrix(x, ncol = 5)))
Output
obs: 5
cols: 5
----- Time-Series -----
col n_missng p_complt n_unique mean p0 p25 p50 p75 p100 iqr
1 Series 1 0 1 5 0.2 -1.24 -0.36 0.66 0.82 1.14 1.18
2 Series 2 0 1 5 0.76 -0.39 0.77 0.81 1.3 1.33 0.53
3 Series 3 0 1 5 -0.67 -2.53 -1.6 -0.11 0.24 0.64 1.84
4 Series 4 0 1 5 0.21 -0.7 -0.44 0.076 0.53 1.59 0.97
5 Series 5 0 1 5 -0.24 -2.36 -1.23 0.028 0.86 1.51 2.09
sd hist grwth_rt
1 0.98 ▅▅▁▅▇ -8.04%
2 0.7 ▅▁▁▇▇ -12.77%
3 1.34 ▅▅▁▅▇ 97.37%
4 0.91 ▇▅▅▁▅ NA%
5 1.57 ▅▅▁▅▇ NA%
Code
overview(EuStockMarkets)
Output
obs: 1860
cols: 4
----- Time-Series -----
col n_missng p_complt n_unique mean p0 p25 p50 p75
1 DAX 0 1 1774 2530.66 1402.34 1744.1 2140.56 2722.37
2 SMI 0 1 1725 3376.22 1587.4 2165.62 2796.35 3812.43
3 CAC 0 1 1617 2227.83 1611 1875.15 1992.3 2274.35
4 FTSE 0 1 1729 3565.64 2281 2843.15 3246.6 3993.57
p100 iqr sd hist grwth_rt
1 6186.09 978.26 1084.79 ▇▂▂▁▁ 0.065%
2 8412 1646.8 1663.03 ▇▃▁▁▁ 0.082%
3 4388.5 399.2 580.31 ▇▂▁▁▁ 0.044%
4 6179 1150.43 976.72 ▇▇▂▂▂ 0.043%
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.