Description Usage Arguments Value Examples
Given Chebyshev coefficients, evaluate the interpolation in a point.
1 2 |
x |
The point to evaluate. |
coef |
The Chebyshev coefficients. Typically from a call to
|
intervals |
A list of minimum and maximum values. One for each dimension of the hypercube. |
threads |
And integer. In case |
A numeric. The interpolated value.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | # make a function which is known to be unsuitable for Chebyshev approximation
f <- function(x) sign(x)
# make a standard Chebyshev interpolation
ch <- ipol(f,dims=50,method='chebyshev')
# then do a truncated interpolation
val <- evalongrid(f,50)
coef <- chebcoef(val)
# truncate the high frequencies
coef[-(1:10)] <- 0
# make a truncated approximation
tch <- Vectorize(function(x) chebeval(x,coef))
# make a lower degree also
ch2 <- ipol(f,dims=10,method='chebyshev')
# plot the functions
## Not run:
s <- seq(-1,1,length.out=400)
plot(s,ch(s),col='red',type='l')
lines(s,tch(s),col='blue')
lines(s,f(s))
lines(s,ch2(s),col='green')
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.