sim.chngpt | R Documentation |
Generate simulation datasets for change point Monte Carlo studies.
sim.chngpt (mean.model = c("thresholded", "thresholdedItxn", "quadratic", "quadratic2b", "cubic2b", "exp", "flatHyperbolic", "z2", "z2hinge", "z2segmented", "z2linear", "logistic"), threshold.type = c("NA", "M01", "M02", "M03", "M10", "M20", "M30", "M11", "M21", "M12", "M22", "M22c", "M31", "M13", "M33c", "hinge", "segmented", "upperhinge", "segmented2", "step", "stegmented"), b.transition = Inf, family = c("binomial", "gaussian"), x.distr = c("norm", "norm3", "norm6", "imb", "lin", "mix", "gam", "zbinary", "gam1", "gam2", "fixnorm", "unif"), e. = NULL, mu.x = 4.7, sd.x = NULL, sd = 0.3, mu.z = 0, alpha = NULL, alpha.candidate = NULL, coef.z = log(1.4), beta = NULL, beta.itxn = NULL, logistic.slope = 15, n, seed, weighted = FALSE, heteroscedastic = FALSE, ar = FALSE, verbose = FALSE) sim.twophase.ran.inte(threshold.type, n, seed) sim.threephase(n, seed, gamma = 1, e = 3, beta_e = 5, f = 7, beta_f = 2, coef.z = 1)
threshold.type |
string. Types of threshold effect to simulate, only applicable when label does not start with sigmoid. |
family |
string. Glm family. |
n |
|
mu.z |
|
seed |
|
weighted |
|
beta |
|
coef.z |
numeric. Coefficient for z. |
beta.itxn |
numeric. Coefficient for z. |
alpha |
numeric, intercept. |
mu.x |
numeric |
sd.x |
numeric |
mean.model |
numeric |
x.distr |
string. Possible values: norm (normal distribution), gam (gamma distribution). gam1 is a hack to allow e. be different |
e. |
|
verbose |
Boolean |
b.transition |
|
sd |
|
ar |
autocorrelation |
alpha.candidate |
Candidate values of alpha, used in code to determine alpha values |
e |
|
beta_e |
|
f |
|
beta_f |
|
logistic.slope |
|
gamma |
|
heteroscedastic |
Boolean. |
mean.model, threshold.type and b.transition all affect mean models.
A data frame with following columns:
y |
0/1 outcome |
x |
observed covariate that we are interested in |
x.star |
unobserved covariate that underlies x |
z |
additional covariate |
In addition, columns starting with 'w' are covariates that we also adjust in the model; columns starting with 'x' are covariates derived from x.
seed=2 par(mfrow=c(2,2)) dat=sim.chngpt(mean.model="thresholded", threshold.type="hinge", family="gaussian", beta=0, n=200, seed=seed, alpha=-1, x.distr="norm", e.=4, heteroscedastic=FALSE) plot(y~z, dat) dat=sim.chngpt(mean.model="thresholded", threshold.type="hinge", family="gaussian", beta=0, n=200, seed=seed, alpha=-1, x.distr="norm", e.=4, heteroscedastic=TRUE) plot(y~z, dat) dat=sim.chngpt(mean.model="z2", threshold.type="hinge", family="gaussian", beta=1, n=200, seed=seed, alpha=1, x.distr="norm", e.=4, heteroscedastic=FALSE) plot(y~z, dat) dat=sim.chngpt(mean.model="z2", threshold.type="hinge", family="gaussian", beta=1, n=200, seed=seed, alpha=1, x.distr="norm", e.=4, heteroscedastic=TRUE) plot(y~z, dat)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.