hclust_gcms | R Documentation |
This function performs hierarchical clustering on a random subset of raster values and produces a dendrogram visualization of the clusters.
hclust_gcms(
s,
var_names = c("bio_1", "bio_12"),
study_area = NULL,
scale = TRUE,
k = 3,
n = NULL
)
s |
A list of stacks of General Circulation Models (GCMs). |
var_names |
Character. A vector of names of the variables to include, or 'all' to include all variables. |
study_area |
An Extent object, or any object from which an Extent object can be extracted. Defines the study area for cropping and masking the rasters. |
scale |
Logical. Should the data be centered and scaled? Default is |
k |
Integer. The number of clusters to identify. |
n |
Integer. The number of values to use in the clustering. If |
A dendrogram visualizing the clusters and the suggested GCMs.
Luíz Fernando Esser (luizesser@gmail.com) https://luizfesser.wordpress.com
transform_gcms
flatten_gcms
var_names <- c("bio_1", "bio_12")
s <- import_gcms(system.file("extdata", package = "chooseGCM"), var_names = var_names)
study_area <- terra::ext(c(-80, -30, -50, 10)) |> terra::vect(crs="epsg:4326")
hclust_gcms(s, var_names, study_area, k = 4, n = 500)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.