Nothing
Code
wilson_dbl <- ci_prop_wilson(x_dbl, conf.level = 0.9, correct = FALSE)
Code
wilsoncc_dbl <- ci_prop_wilson(x_dbl, conf.level = 0.9, correct = TRUE)
Code
wilson_lgl <- ci_prop_wilson(x_lgl, conf.level = 0.9, correct = FALSE)
Code
ci_prop_wilson(x_rsp, conf.level = 0.9)
Message
-- Wilson Confidence Interval without continuity correction --------------------
* 5 responses out of 10
* Estimate: 0.5
* 90% Confidence Interval:
(0.2693, 0.7307)
Code
ci_prop_wilson(x_true)
Message
-- Wilson Confidence Interval without continuity correction --------------------
* 32 responses out of 32
* Estimate: 1
* 95% Confidence Interval:
(0.8928, 1)
Code
ci_prop_wilson(x_false)
Message
-- Wilson Confidence Interval without continuity correction --------------------
* 0 responses out of 32
* Estimate: 0
* 95% Confidence Interval:
(0, 0.1072)
Code
wald_dbl <- ci_prop_wald(x_dbl, conf.level = 0.9, correct = FALSE)
Code
waldcc_dbl <- ci_prop_wald(x_dbl, conf.level = 0.9, correct = TRUE)
Code
wald_lgl <- ci_prop_wald(x_lgl, conf.level = 0.9, correct = FALSE)
Code
ci_prop_wald(x_rsp, conf.level = 0.95, correct = TRUE)
Message
-- Wald Confidence Interval with Continuity Correction -------------------------
* 5 responses out of 10
* Estimate: 0.5
* 95% Confidence Interval:
(0.1401, 0.8599)
Code
ci_prop_wald(x_true)
Message
-- Wald Confidence Interval without Continuity Correction ----------------------
* 32 responses out of 32
* Estimate: 1
* 95% Confidence Interval:
(1, 1)
Code
ci_prop_wald(x_false)
Message
-- Wald Confidence Interval without Continuity Correction ----------------------
* 0 responses out of 32
* Estimate: 0
* 95% Confidence Interval:
(0, 0)
Code
clopper_pearson_dbl <- ci_prop_clopper_pearson(x_dbl, conf.level = 0.9)
Code
clopper_pearson_lgl <- ci_prop_clopper_pearson(x_lgl, conf.level = 0.9)
Code
ci_prop_clopper_pearson(x_rsp, conf.level = 0.95)
Message
-- Clopper-Pearson Confidence Interval -----------------------------------------
* 5 responses out of 10
* Estimate: 0.5
* 95% Confidence Interval:
(0.1871, 0.8129)
Code
ci_prop_clopper_pearson(x_true)
Message
-- Clopper-Pearson Confidence Interval -----------------------------------------
* 32 responses out of 32
* Estimate: 1
* 95% Confidence Interval:
(0.8911, 1)
Code
ci_prop_clopper_pearson(x_false)
Message
-- Clopper-Pearson Confidence Interval -----------------------------------------
* 0 responses out of 32
* Estimate: 0
* 95% Confidence Interval:
(0, 0.1089)
Code
agresti_coull_dbl <- ci_prop_agresti_coull(x_dbl, conf.level = 0.9)
Code
agresti_coull_lgl <- ci_prop_agresti_coull(x_lgl, conf.level = 0.9)
Code
ci_prop_agresti_coull(x_rsp, conf.level = 0.95)
Message
-- Agresti-Coull Confidence Interval -------------------------------------------
* 5 responses out of 10
* Estimate: 0.5
* 95% Confidence Interval:
(0.2366, 0.7634)
Code
ci_prop_agresti_coull(x_true)
Message
-- Agresti-Coull Confidence Interval -------------------------------------------
* 32 responses out of 32
* Estimate: 1
* 95% Confidence Interval:
(0.8727, 1)
Code
ci_prop_agresti_coull(x_false)
Message
-- Agresti-Coull Confidence Interval -------------------------------------------
* 0 responses out of 32
* Estimate: 0
* 95% Confidence Interval:
(0, 0.1273)
Code
jeffreys_dbl <- ci_prop_jeffreys(x_dbl, conf.level = 0.9)
Code
jeffreys_lgl <- ci_prop_jeffreys(x_lgl, conf.level = 0.9)
Code
ci_prop_jeffreys(x_rsp, conf.level = 0.95)
Message
-- Jeffreys Interval -----------------------------------------------------------
* 5 responses out of 10
* Estimate: 0.5
* 95% Confidence Interval:
(0.2235, 0.7765)
Code
ci_prop_jeffreys(x_true)
Message
-- Jeffreys Interval -----------------------------------------------------------
* 32 responses out of 32
* Estimate: 1
* 95% Confidence Interval:
(0.9251, 1)
Code
ci_prop_jeffreys(x_false)
Message
-- Jeffreys Interval -----------------------------------------------------------
* 0 responses out of 32
* Estimate: 0
* 95% Confidence Interval:
(0, 0.0749)
Code
ci_prop_wilson(x_dbl, conf.level = c(0.9, 0.9))
Condition
Error in `ci_prop_wilson()`:
! The `conf.level` argument must be length 1.
Code
ci_prop_wilson(mtcars$cyl)
Condition
Error in `ci_prop_wilson()`:
! Expecting `x` to be either <logical> or <numeric/integer> coded as 0 and 1.
Code
ci_prop_wilson_strata(x = rsp, strata = strata, weights = weights, correct = FALSE)
Message
-- Stratified Wilson Confidence Interval without continuity correction ---------
* 50 responses out of 80
* Weights: 0.048, 0.095, 0.143, 0.19, 0.238, 0.286
* Estimate: 0.625
* 95% Confidence Interval:
(0.4867, 0.7186)
Code
ci_prop_wilson_strata(x = rsp, strata = strata, weights = weights, correct = TRUE)
Message
-- Stratified Wilson Confidence Interval with continuity correction ------------
* 50 responses out of 80
* Weights: 0.048, 0.095, 0.143, 0.19, 0.238, 0.286
* Estimate: 0.625
* 95% Confidence Interval:
(0.4483, 0.7531)
Code
ci_prop_wilson_strata(x = as.numeric(rsp), strata = strata, weights = weights)
Message
-- Stratified Wilson Confidence Interval without continuity correction ---------
* 50 responses out of 80
* Weights: 0.048, 0.095, 0.143, 0.19, 0.238, 0.286
* Estimate: 0.625
* 95% Confidence Interval:
(0.4867, 0.7186)
Code
ci_prop_wilson_strata(x = as.numeric(rsp), strata = strata)
Message
-- Stratified Wilson Confidence Interval without continuity correction ---------
* 50 responses out of 80
* Weights: a.x = 0.211, b.x = 0.189, a.y = 0.118, b.y = 0.154, a.z = 0.174, b.z
= 0.153
* Estimate: 0.625
* 95% Confidence Interval:
(0.5242, 0.7269)
Code
ci_prop_wilson_strata(x = rep_len(TRUE, length(rsp)), strata = strata, weights = weights)
Condition
Error in `ci_prop_wilson_strata()`:
! All values in `x` argument are either `TRUE` or `FALSE` and CI is not estimable.
Code
ci_prop_wilson_strata(x = rep_len(FALSE, length(rsp)), strata = strata,
weights = weights)
Condition
Error in `ci_prop_wilson_strata()`:
! All values in `x` argument are either `TRUE` or `FALSE` and CI is not estimable.
Code
ci_prop_wilson_strata(x = as.numeric(rsp), strata = strata, max.iterations = -1)
Condition
Error in `ci_prop_wilson_strata()`:
! Argument `max.iterations` must be a positive integer.
Code
ci_prop_wilson_strata(x = as.numeric(rsp), strata = strata, max.iterations = -1)
Condition
Error in `ci_prop_wilson_strata()`:
! Argument `max.iterations` must be a positive integer.
Code
ci_prop_wilson_strata(x = as.numeric(rsp), strata = strata, weights = weights +
pi / 5)
Condition
Error in `ci_prop_wilson_strata()`:
! The sum of the `weights` argument must be 1
Code
ci_prop_wilson_strata(x = as.numeric(rsp), strata = strata, weights = weights +
pi)
Condition
Error in `ci_prop_wilson_strata()`:
! The `weights` argument must be in the interval `[0, 1]`.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.