ThrSelection | R Documentation |
This function selects a moving threshold for circular data using an automatic procedure for selecting the local number of exceedances
ThrSelection( Data, drc, h = 30, b = 0.35, thetaGrid, EVIestimator = "ML", useKernel = TRUE, concent = 10, bw = 30, numCores = 2 )
Data |
Response variable |
drc |
Directional covariate |
h |
Bandwidth value |
b |
Parameter used in the automatic procedure for selection of local number of exceedances |
thetaGrid |
Grid values at which the estimation is performed |
EVIestimator |
It can be either "ML" or "Mom" |
useKernel |
Logical. If TRUE (default), use kernel to assign weights depending on the directional distance. |
concent |
Concentration parameter value for von Mises kernel |
bw |
Bandwidth parameter value for smoothing the sample path of the selected threshold |
numCores |
Number of CPU cores to be used |
See Konzen, E., Neves, C., and Jonathan, P. (2021). Modeling nonstationary extremes of storm severity: Comparing parametric and semiparametric inference. Environmetrics, 32(4), e2667.
List containing the selected threshold and selected number of local exceedances at each direction in the grid.
PlotData
and PolarPlotData
to see how
the threshold can be visualised.
data(HsSP) data(drc) timeRange <- 54.5 idx <- order(drc) drc <- drc[idx] Data <- HsSP[idx] set.seed(1234) Data <- Data + runif(length(Data), -1e-4, 1e-4) thetaVec <- 1:360 thrResultMom <- ThrSelection(Data=Data, drc=drc, h=60, b=0.35, thetaGrid=thetaVec, EVIestimator="Mom", useKernel=T, concent=10, bw=30, numCores=2)$thr thrResultML <- ThrSelection(Data=Data, drc=drc, h=60, b=0.35, thetaGrid=thetaVec, EVIestimator="ML", useKernel=T, concent=10, bw=30, numCores=2)$thr ## See also examples in vignettes: # vignette("localMethods", package = "circularEV") # vignette("splineML", package = "circularEV")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.