clean | R Documentation |
Use any of these functions to quickly clean columns in your data set. Use clean()
to pick the functions that return the least relative number of NA
s. They always return the class from the function name (e.g. clean_Date()
always returns class Date
).
clean(x) ## S3 method for class 'data.frame' clean(x) clean_logical( x, true = regex_true(), false = regex_false(), na = NULL, fixed = FALSE, ignore.case = TRUE ) clean_factor( x, levels = unique(x), ordered = FALSE, droplevels = FALSE, fixed = FALSE, ignore.case = TRUE ) clean_numeric(x, remove = "[^0-9.,-]", fixed = FALSE) clean_double(x, remove = "[^0-9.,-]", fixed = FALSE) clean_integer(x, remove = "[^0-9.,-]", fixed = FALSE) clean_character( x, remove = "[^a-z \t\r\n]", fixed = FALSE, ignore.case = TRUE, trim = TRUE ) clean_currency(x, currency_symbol = NULL, remove = "[^0-9.,-]", fixed = FALSE) clean_percentage(x, remove = "[^0-9.,-]", fixed = FALSE) clean_Date(x, format = NULL, guess_each = FALSE, max_date = Sys.Date(), ...) clean_POSIXct( x, tz = "", remove = "[^.0-9 :/-]", fixed = FALSE, max_date = Sys.Date(), ... )
x |
data to clean |
true |
regex to interpret values as |
false |
regex to interpret values as |
na |
regex to force interpret values as |
fixed |
logical to indicate whether regular expressions should be turned off |
ignore.case |
logical to indicate whether matching should be case-insensitive |
levels |
new factor levels, may be named with regular expressions to match existing values, see Details |
ordered |
logical to indicate whether the factor levels should be ordered |
droplevels |
logical to indicate whether non-existing factor levels should be dropped |
remove |
regex to define the character(s) that should be removed, see Details |
trim |
logical to indicate whether the result should be trimmed with |
currency_symbol |
the currency symbol to use, which will be guessed based on the input and otherwise defaults to the current system locale setting (see |
format |
character string giving a date-time format as used by strptime. For |
guess_each |
logical to indicate whether all items of |
max_date |
date (coercible with [as.Date()]) to indicate to maximum allowed of |
... |
for |
tz |
time zone specification to be used for the conversion,
if one is required. System-specific (see time zones),
but |
Using clean()
on a vector will guess a cleaning function based on the potential number of NAs
it returns. Using clean()
on a data.frame to apply this guessed cleaning over all columns.
Info about the different functions:
clean_logical()
:
Use parameters true
and false
to match values using case-insensitive regular expressions (regex). Unmatched values are considered NA
. At default, values are matched with regex_true
and regex_false
. This allows support for values "Yes" and "No" in the following languages: Arabic, Bengali, Chinese (Mandarin), Dutch, English, French, German, Hindi, Indonesian, Japanese, Malay, Portuguese, Russian, Spanish, Telugu, Turkish and Urdu. Use parameter na
to override values as NA
that would else be matched with true
or false
. See Examples.
clean_factor()
:
Use parameter levels
to set new factor levels. They can be case-insensitive regular expressions to match existing values of x
. For matching, new values for levels
are internally temporary sorted descending on text length. See Examples.
clean_numeric()
, clean_double()
, clean_integer()
and clean_character()
:
Use parameter remove
to match values that must be removed from the input, using regular expressions (regex). In case of clean_numeric()
, comma's will be read as dots and only the last dot will be kept. Function clean_character()
will keep middle spaces at default. See Examples.
clean_percentage()
:
This new class works like clean_numeric()
, but transforms it with as.percentage
, which will retain the original values, but will print them as percentages. See Examples.
clean_currency()
:
This new class works like clean_numeric()
, but transforms it with as.currency
. The currency symbol is guessed based on the most traded currencies by value (see Source): the United States dollar, Euro, Japanese yen, Pound sterling, Swiss franc, Renminbi, Swedish krona, Mexican peso, South Korean won, Turkish lira, Russian ruble, Indian rupee and the South African rand. See Examples.
clean_Date()
:
Use parameter format
to define a date format, or leave it empty to have the format guessed. Use "Excel"
to read values as Microsoft Excel dates. The format
parameter will be evaluated with format_datetime
, which means that a format like "d-mmm-yy"
with be translated internally to "%e-%b-%y"
for convenience. See Examples.
clean_POSIXct()
:
Use parameter remove
to match values that must be removed from the input, using regular expressions (regex). The resulting string will be coerced to a date/time element with class POSIXct
, using as.POSIXct()
. See Examples.
The use of invalid regular expressions in any of the above functions will not return an error (like in base R), but will instead interpret the expression as a fixed value and will throw a warning.
The clean_*
functions always return the class from the function name:
clean_logical()
: class logical
clean_factor()
: class factor
clean_numeric()
and clean_double()
: class numeric
clean_integer()
: class integer
clean_character()
: class character
clean_percentage()
: class percentage
clean_currency()
: class currency
clean_Date()
: class Date
clean_POSIXct()
: classes POSIXct/POSIXt
Triennial Central Bank Survey Foreign exchange turnover in April 2016 (PDF). Bank for International Settlements. 11 December 2016. p. 10.
clean_logical(c("Yes", "No")) # English clean_logical(c("Oui", "Non")) # French clean_logical(c("ya", "tidak")) # Indonesian clean_logical(x = c("Positive", "Negative", "Unknown", "Some value"), true = "pos", false = "neg") gender_age <- c("male 0-50", "male 50+", "female 0-50", "female 50+") clean_factor(gender_age, c("M", "F")) clean_factor(gender_age, c("Male", "Female")) clean_factor(gender_age, c("0-50", "50+"), ordered = TRUE) clean_Date("13jul18", "ddmmmyy") clean_Date("12 August 2010") clean_Date("12 06 2012") clean_Date("October 1st 2012") clean_Date("43658") clean_Date("14526", "Excel") clean_Date(c("1 Oct 13", "October 1st 2012")) # could not be fitted in 1 format clean_Date(c("1 Oct 13", "October 1st 2012"), guess_each = TRUE) clean_Date(c("12-14-13", "1 Oct 2012"), guess_each = TRUE, format = c("d mmm yyyy", "mm-yy-dd")) # only these formats will be tried clean_POSIXct("Created log on 2020/02/11 11:23 by user Joe") clean_POSIXct("Created log on 2020.02.11 11:23 by user Joe", tz = "UTC") clean_numeric("qwerty123456") clean_numeric("Positive (0.143)") clean_numeric("0,143") clean_numeric("minus 12 degrees") clean_percentage("PCT: 0.143") clean_percentage(c("Total of -12.3%", "Total of +4.5%")) clean_character("qwerty123456") clean_character("Positive (0.143)") clean_currency(c("Received 25", "Received 31.40")) clean_currency(c("Jack sent £ 25", "Bill sent £ 31.40")) df <- data.frame(A = c("2 Apr 2016", "5 Feb 2020"), B = c("yes", "no"), C = c("Total of -12.3%", "Total of +4.5%"), D = c("Marker: 0.4513 mmol/l", "Marker: 0.2732 mmol/l")) df clean(df)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.