Nothing
## ----eval=FALSE---------------------------------------------------------------
# # Load required libraries
# invisible(suppressPackageStartupMessages({
# library(clintrialx) # For fetching clinical trial data
# library(ggplot2) # For data visualization
# library(plotly) # For interactive plots
# library(dplyr) # For data manipulation
# library(lubridate) # For date handling
# }))
## ----eval=FALSE---------------------------------------------------------------
# # Fetch cancer study data in India
# df <- ctg_bulk_fetch(condition = "cancer", location = "India")
## ----eval=FALSE---------------------------------------------------------------
# # Create a table of study statuses
# status_counts <- table(df$`Study Status`)
#
# # Convert the table to a data frame
# status_df <- data.frame(status = names(status_counts), count = as.numeric(status_counts))
#
# # Generate the bar plot
# ggplotly(ggplot(status_df, aes(x = reorder(status, -count), y = count)) +
# geom_bar(stat = "identity", fill = "orange") +
# theme_minimal() +
# labs(title = "Distribution of Study Statuses",
# x = "Study Status",
# y = "Count") +
# theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
# geom_text(aes(label = count), vjust = -0.5))
## ----eval=FALSE---------------------------------------------------------------
# # Create an interactive box plot of enrollment by study phase
# ggplotly(ggplot(df, aes(x = Phases, y = Enrollment)) +
# geom_boxplot(fill = "lightblue", outlier.colour = "red", outlier.shape = 1) +
# geom_jitter(color = "darkblue", size = 0.5, alpha = 0.5, width = 0.2) +
# theme_minimal(base_size = 14) +
# labs(title = "Enrollment by Study Phase",
# x = "Study Phase",
# y = "Enrollment") +
# theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 12),
# plot.title = element_text(hjust = 0.5)))
## ----eval=FALSE---------------------------------------------------------------
# # Convert date strings to Date objects
# df$start_date <- as.Date(df$`Start Date`, format = "%Y-%m-%d")
# df$completion_date <- as.Date(df$`Completion Date`, format = "%Y-%m-%d")
#
# # Create a scatter plot with a horizontal line at 2024
# ggplot(df, aes(x = start_date, y = completion_date, color = `Study Status`)) +
# geom_point(alpha = 0.6) +
# geom_hline(yintercept = as.Date("2024-01-01"), linetype = "dashed", color = "blue") +
# theme_minimal() +
# labs(title = "Study Duration Timeline",
# x = "Start Date",
# y = "Completion Date") +
# scale_color_brewer(palette = "Set1")
## ----eval=FALSE---------------------------------------------------------------
# # Summarize and plot funding sources by study type
# df_summary <- df %>%
# count(`Funder Type`, `Study Type`) %>%
# group_by(`Funder Type`) %>%
# mutate(prop = n / sum(n))
#
# ggplotly(ggplot(df_summary, aes(x = `Funder Type`, y = prop, fill = `Study Type`)) +
# geom_bar(stat = "identity", position = "dodge") +
# theme_minimal() +
# labs(title = "Funding Sources and Study Types",
# x = "Funder Type",
# y = "Proportion") +
# scale_fill_brewer(palette = "Set2") +
# theme(axis.text.x = element_text(angle = 45, hjust = 1)))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.