| sim.rord | R Documentation | 
sim.rord Simulate replications of spatial ordinal data
sim.rord( n.subject, n.site, n.rep = 100, midalpha, beta, phi, sigma2, covar, location )
| n.subject | number of subjects. | 
| n.site | number of spatial sites for each subject. | 
| n.rep | number of simulation. Parameter inputs include: | 
| midalpha | cutoff parameter (excluding -Inf and +Inf); | 
| beta | regression coefficient; | 
| phi | dependence parameter for spatial dependence; and | 
| sigma2 | sigma^2 (variance) for the spatial dependence. | 
| covar | regression (design) matrix, including intercepts. | 
| location | a matrix contains spatial location of sites within each subject. | 
sim.rord returns a list (length n.rep) of matrix (n.subject*n.site) with the underlying parameter as inputs.
set.seed(1203)
n.subject <- 100
n.lat <- n.lon <- 10
n.site <- n.lat*n.lon
beta <- c(1,2,-1) # First 1 here is the intercept
midalpha <- c(1.15, 2.18) ; phi <- 0.8 ; sigma2 <- 0.7
true <- c(midalpha,beta,sigma2,phi)
Xi <- rnorm(n.subject,0,1) ; Xj <- rbinom(n.site,1,0.6)
 VV <- matrix(NA, nrow = n.subject*n.site, ncol = 3)
 for(i in 1:n.subject){ for(j in 1:n.site){
     VV[(i-1)*n.site+j,] <- c(1,Xi[i],Xj[j])
       }
 }
location <- cbind(rep(seq(1,n.lat,length=n.lat),n.lat),rep(1:n.lon, each=n.lon))
sim.data <- sim.rord(n.subject, n.site, n.rep = 2, midalpha, beta, phi, sigma2, covar=VV, location)
length(sim.data)
head(sim.data[[1]])
dim(sim.data[[1]])
hist(sim.data[[1]])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.