Generate parallel random numbers on GPU

library('clrng')

runifGpu

get_system_info()
if (detectGPUs()) {

  ## show all the available platforms
  gpuR::listContexts()[,'platform']

  ## set the context and show the device we are using
  setContext(grep("gpu", listContexts()$device_type)[1])
  currentDevice()

  ## set the initial seed of the package/first stream
  setBaseCreator(rep(12235,6))

  ## check the size of work items and GPU precision type at the moment
  getOption('clrng.Nglobal')
  getOption('clrng.type')

  ## create default number of streams on GPU
  myStreamsGpu = clrng::createStreamsGpu()
  ## show its dimention
  dim(myStreamsGpu)
  ## create 10 uniform random numbers using the streams and show detailed backend code
  as.vector(clrng::runifGpu(10, myStreamsGpu, verbose=2))

  # generating a 100 x 100 matrix of random uniforms
  b<-clrng::runifGpu(c(100,100), myStreamsGpu)
  bvector<-as.vector(as.matrix(b))

  # plot the histogram of the uniform random numbers
  hist(bvector, breaks=40)
  # check its quantiles
  quantile(bvector)

  } else {
  message("No GPU detected. Skipping GPU-dependent code.")
}

rnormGpu

if (detectGPUs()) {

  setContext(grep("gpu", listContexts()$device_type)[1])
  ## configure the size of work items
  options(clrng.Nglobal = c(128,64))

  ## create default (here is 128*64) number of streams on GPU
  myStreamsGpu = clrng::createStreamsGpu()
  ## check its dimension
  dim(myStreamsGpu)

  ## generate a vector of 10 random normal numbers on GPU, and print out the kernel code
  as.vector(clrng::rnormGpu(10, myStreamsGpu, verbose=2))
  ## generate a 4x4 matrix of random normal numbers on GPU, still using the ctreated streams
  as.matrix(clrng::rnormGpu(c(4, 4), myStreamsGpu))

  ## create many new streams and generate a 1024x512 matrix of normal random numbers, with specified Nglobal
  streamsGpu2 <- createStreamsGpu(n =512*128)
  a<-clrng::rnormGpu(c(1024,512), streams=streamsGpu2, Nglobal=c(512,128))

  ## see the histogram of the produced normal random numbers
  avector<-as.vector(as.matrix(a))
  hist(avector,breaks=40)

  # do a Q-Q plot with quantiles computed on GPU by clrng package
  clrng::qqnormGpu(avector)
  # can also do the Q-Q plot calculation on CPU by stats::qqnorm
  stats::qqnorm(avector)

} else {
  message("No GPU detected. Skipping GPU-dependent code.")
}

rexpGpu

if (detectGPUs()) {
    ## generate a 200x100 matrix of exponential random numbers of mean = 1, 
    ## using the supplied streams, and specify the size of Nglobal to be equal to the number of strams 
    b<-clrng::rexpGpu(c(200,100), rate=1, streams = myStreamsGpu, Nglobal=c(64,16))

    # convert GPU matrix to an R vector on CPU, plot its histogram
    bGpu<-as.vector(as.matrix(b))
    hist(bGpu, freq=TRUE, breaks=40)

    # generate on CPU a vector of exponential random numbers of mean = 1, plot its histogram
    bCpu <- stats::rexp(20000, rate=1)
    hist(bCpu, freq=TRUE, breaks = 40)

    # compare the two sequence of random exponential numbers by looking at their distribution quantiles
    quantile(bGpu)
    quantile(bCpu)


   } else {
  message("No GPU detected. Skipping GPU-dependent code.")
}


Try the clrng package in your browser

Any scripts or data that you put into this service are public.

clrng documentation built on Sept. 11, 2024, 7:19 p.m.