Nothing
#' clustord: Clustering Using Proportional Odds Model, Ordered Stereotype Model or Binary Model.
#'
#' Biclustering, row clustering and column clustering using the proportional
#' odds model (POM), ordered stereotype model (OSM) or binary model for ordinal
#' categorical data.
#'
#' The clustord package provides six functions: \code{clustord()}, \code{rerun()},
#' \code{mat2df()}, \code{calc.SE.rowcluster()}, \code{calc.SE.bicluster()}, and
#' \code{calc.cluster.comparisons()}.
#'
#' @section Clustering function: The main function is \code{clustord()}, which
#' fits a clustering model to the data. The model is fitted using
#' likelihood-based clustering via the EM algorithm. The package assumes that
#' you started with a data matrix of responses, though you will need to
#' convert that data matrix into a long-form data frame before running
#' \code{clustord}. Every element in the original data matrix becomes one
#' row in the data frame, and the row and column indices from the data matrix
#' become the columns ROW and COL in the data frame. You can perform
#' clustering on rows or columns of the data matrix, or biclustering on both
#' rows and columns simultaneously. You can include any number of covariates
#' for rows and covariates for columns. Ordinal models used in the package are
#' Ordered Stereotype Model (OSM), Proportional Odds Model (POM) and a
#' dedicated Binary Model for binary data.
#'
#' The \code{rerun()} function is useful for continuing clustering runs that did
#' not converge on the first attempt, and for running new clustering runs using
#' the estimated parameters of a previous run as a starting point. The main
#' input for this function is a \code{clustord} object output by \code{clustord},
#' and internally the \code{rerun} function runs \code{clustord}, after setting
#' up all the input parameters based on the original model fitting run.#'
#'
#' @section Utility function:
#' \code{mat2df()} is a utility function provided to convert a data matrix of
#' responses into the long-form data frame format required by
#' \code{clustord()}, and can also attach any covariates to that long-form
#' data frame if needed.
#'
#' @section SE calculation functions:
#' \code{calc.SE.rowcluster()} and \code{calc.SE.bicluster()} are functions to
#' run after running \code{clustord()}, to calculate the standard errors on
#' the parameters fitted using \code{clustord()}.
#'
#' @section Clustering comparisons:
#' \code{calc.cluster.comparisons()} can be used to compare the assigned cluster
#' memberships of the rows or columns of the data matrix from two different
#' clustering fits, in a way that avoids the label-switching problem.
#'
#' @docType package
#' @name clustord-package
#' @useDynLib clustord, .registration=TRUE
#' @importFrom Rcpp evalCpp
#' @keywords internal
#' @aliases clustord-package
"_PACKAGE"
# The following block is used by usethis to automatically manage roxygen
# namespace tags. Modify with care!
## usethis namespace: start
## usethis namespace: end
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.