Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(cmaRs)
## -----------------------------------------------------------------------------
data(preddata.std)
head(preddata.std)
## -----------------------------------------------------------------------------
data(classdata.std)
head(classdata.std)
## -----------------------------------------------------------------------------
data(table.b6)
head(table.b6)
## ----echo=TRUE, results='hide', eval=FALSE-----------------------------------
# prediction.model <- cmaRs(Volume ~ ., degree = 2, nk = 20, data = trees)
## ---- eval=FALSE--------------------------------------------------------------
# summary(prediction.model)
# #> Call:
# #> cmaRs(formula = Volume ~ ., data = trees, degree = 2, nk = 20)
#
# #> Volume = +29.1634
# #> +4.9278 * pmax(0,Girth-14.2)
# #> -3.2309 * pmax(0,14.2-Girth)
# #> +0.7313 * pmax(0,Height-75)
# #> -0.1684 * pmax(0,75-Height)
# #> +0.1312 * pmax(0,Girth-8.3)*pmax(0,Height-75)
# #> -1.2977 * pmax(0,Height-78)
#
# #> R2 0.9793 r 0.9896 RSS 168.0029
## ----eval=FALSE---------------------------------------------------------------
# fig1 <- plot(prediction.model)
## ----fig1, echo=FALSE, fig.height=12------------------------------------------
knitr::include_graphics("Figure1.png")
## ----eval=FALSE---------------------------------------------------------------
# predict(prediction.model)
# #> [1] 9.259021 9.386200 9.695543 16.703820 20.239753 20.164926 17.308760
# #> [8] 18.824519 22.046053 19.470698 22.996184 21.255036 21.255036 20.075638
# #> [15] 22.055412 24.794797 29.229259 31.136370 26.874258 26.018423 32.955379
# #> [22] 34.096100 30.473296 37.528153 43.074254 52.021298 53.805352 54.756953
# #> [29] 55.315354 55.315354 77.168803
## ----results='hide', warning=FALSE, eval=FALSE, message=FALSE-----------------
# library(earth)
# library(cmaRs)
# classification.model <- cmaRs(survived ~ age, nk = 35,
# classification = TRUE, data = etitanic)
## ----eval=FALSE---------------------------------------------------------------
# summary(classification.model)
# #> Call:
# #> cmaRs(formula = survived ~ age, data = etitanic, classification = TRUE,
# #> nk = 35)
# #>
# #> survived = -4.9489
# #> -0.3084 * pmax(0,age-18)
# #> +0.3321 * pmax(0,18-age)
# #> -0.427 * pmax(0,age-53)
# #> +0.3564 * pmax(0,age-67)
# #> -0.3291 * pmax(0,age-64)
# #> +1.1664 * pmax(0,age-46)
# #> +0.7742 * pmax(0,age-57)
# #> -0.1451 * pmax(0,age-35)
# #> -0.7469 * pmax(0,age-58)
# #> +0.2288 * pmax(0,age-61)
# #> +0.0725 * pmax(0,age-41)
# #> -1.0824 * pmax(0,age-45)
# #> -0.5147 * pmax(0,age-48)
# #> +0.3658 * pmax(0,age-51)
# #> +0.281 * pmax(0,age-44)
# #> +0.0994 * pmax(0,age-34)
# #> +0.6316 * pmax(0,age-2)
# #> -0.32 * pmax(0,age-3)
# #>
# #> AUC 0.6221 MCR 0.3681 PCC 0.6319 precision 0.6339 recall 0.895 specificity 0.2506
## ----echo=TRUE, results='hide', warning=FALSE, eval=FALSE---------------------
# classification.model.threshold <- cmaRs(survived ~ age, nk = 35,
# classification = TRUE, data = etitanic,
# threshold.class = 0.1, Auto.linpreds = FALSE)
## ----eval=FALSE---------------------------------------------------------------
# summary(classification.model.threshold)
# #> Call:
# #> cmaRs(formula = survived ~ age, data = etitanic, classification = TRUE,
# #> threshold.class = 0.1, nk = 35, Auto.linpreds = FALSE)
# #>
# #> survived = -4.9489
# #> -0.3084 * pmax(0,age-18)
# #> +0.3321 * pmax(0,18-age)
# #> -0.427 * pmax(0,age-53)
# #> +0.3564 * pmax(0,age-67)
# #> -0.3291 * pmax(0,age-64)
# #> +1.1664 * pmax(0,age-46)
# #> +0.7742 * pmax(0,age-57)
# #> -0.1451 * pmax(0,age-35)
# #> -0.7469 * pmax(0,age-58)
# #> +0.2288 * pmax(0,age-61)
# #> +0.0725 * pmax(0,age-41)
# #> -1.0824 * pmax(0,age-45)
# #> -0.5147 * pmax(0,age-48)
# #> +0.3658 * pmax(0,age-51)
# #> +0.281 * pmax(0,age-44)
# #> +0.0994 * pmax(0,age-34)
# #> +0.6316 * pmax(0,age-2)
# #> -0.32 * pmax(0,age-3)
# #>
# #> AUC 0.6221 MCR 0.5746 PCC 0.4254 precision 1 recall 0.0291 specificity 1
## ----eval=FALSE---------------------------------------------------------------
# fig2 <- plot(classification.model)
## ----fig2, echo=FALSE, fig.height=6-------------------------------------------
knitr::include_graphics("Figure2.png")
## -----------------------------------------------------------------------------
data(table.b6)
head(table.b6)
## ----echo=TRUE, results='hide', eval=FALSE-----------------------------------
# model.ex1 <- cmaRs(y~., degree = 2, nk = 20, classification = FALSE,
# Auto.linpreds = FALSE, data = table.b6)
#
# summary(model.ex1)
# # y= +0.003
# # -0.003 * pmax(0,x4-0.0177)
# # -0.0798 * pmax(0,0.0177-x4)
# # 0 * pmax(0,x2-436.9)
# # 0 * pmax(0,436.9-x2)
# # -7e-04 * pmax(0,x1-0.0044)*pmax(0,436.9-x2)
# # -2.6911 * pmax(0,x1-0.01)
# # +0.5728 * pmax(0,x3-0.0186)
# # +7e-04 * pmax(0,x1-0.0044)*pmax(0,x2-436.9)
# # +2.6131 * pmax(0,x1-0.0106)
# # -2e-04 * pmax(0,436.9-x2)*pmax(0,x4-0.0062)
## ----echo=TRUE, results='hide', eval=FALSE-----------------------------------
# model.ex1$bf.cmars
# # [1] "pmax(0,x4-0.0177)" "pmax(0,0.0177-x4)"
# # [3] "pmax(0,x2-436.9)" "pmax(0,436.9-x2)"
# # [5] "pmax(0,x1-0.0044)*pmax(0,436.9-x2)" "pmax(0,x1-0.01)"
# # [7] "pmax(0,x3-0.0186)" "pmax(0,x1-0.0044)*pmax(0,x2-436.9)"
# # [9] "pmax(0,x1-0.0106)" "pmax(0,436.9-x2)*pmax(0,x4-0.0062)"
## ----echo=TRUE, results='hide', eval=FALSE-----------------------------------
# model.ex1$L
# # [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
# # [1,] 0 0.0000000 0.0000000 0.00000 0.00000 0.0000 0.0000000 0.0000000
# # [2,] 0 0.3978693 0.0000000 0.00000 0.00000 0.0000 0.0000000 0.0000000
# # [3,] 0 0.0000000 0.3339162 0.00000 0.00000 0.0000 0.0000000 0.0000000
# # [4,] 0 0.0000000 0.0000000 10.15874 0.00000 0.0000 0.0000000 0.0000000
# # [5,] 0 0.0000000 0.0000000 0.00000 19.45508 0.0000 0.0000000 0.0000000
# # [6,] 0 0.0000000 0.0000000 0.00000 0.00000 134.2702 0.0000000 0.0000000
# # [7,] 0 0.0000000 0.0000000 0.00000 0.00000 0.0000 0.3196873 0.0000000
# # [8,] 0 0.0000000 0.0000000 0.00000 0.00000 0.0000 0.0000000 0.3170173
# # [9,] 0 0.0000000 0.0000000 0.00000 0.00000 0.0000 0.0000000 0.0000000
# # [10,] 0 0.0000000 0.0000000 0.00000 0.00000 0.0000 0.0000000 0.0000000
# # [11,] 0 0.0000000 0.0000000 0.00000 0.00000 0.0000 0.0000000 0.0000000
# # [,9] [,10] [,11]
# # [1,] 0.00000 0.0000000 0.0000
# # [2,] 0.00000 0.0000000 0.0000
# # [3,] 0.00000 0.0000000 0.0000
# # [4,] 0.00000 0.0000000 0.0000
# # [5,] 0.00000 0.0000000 0.0000
# # [6,] 0.00000 0.0000000 0.0000
# # [7,] 0.00000 0.0000000 0.0000
# # [8,] 0.00000 0.0000000 0.0000
# # [9,] 11.53763 0.0000000 0.0000
# # [10,] 0.00000 0.3182766 0.0000
# # [11,] 0.00000 0.0000000 78.2987
#
## ----echo=TRUE, results='hide', eval=FALSE-----------------------------------
# bfs_forward_names <- bfs_forward_names[1:2]
## ----echo=TRUE, results='hide', eval=FALSE-----------------------------------
# bfs_forward_names <- rownames(model_mars$dirs)
# bfs_forward_names <- bfs_forward_names[1:2]
# bfs_forward_names.orig <- bfs_forward_names
## ----echo=TRUE, results='hide', eval=FALSE-----------------------------------
# model.ex1$DMS
# # [,1] [,2] [,3] [,4]
# # [1,] "0" "0" "0" "0"
# # [2,] "0" "0" "0" "0"
# # [3,] "0" "0" "0" "0"
# # [4,] "0" "0" "0" "matrix(1, nrow <- (n+1), ncol <- 1)"
#
## ----echo=TRUE, results='hide', eval=FALSE-----------------------------------
# model.ex1$VARMS
# # [,1] [,2] [,3] [,4]
# # [1,] "1" "1" "1" "1"
# # [2,] "1" "1" "1" "1"
# # [3,] "1" "1" "1" "1"
# # [4,] "1" "1" "1" "xplus4"
#
## ----echo=TRUE, results='hide', eval=FALSE-----------------------------------
# # matrix(-1, nrow <- (n+1), ncol <- 1)
## ----echo=TRUE, results='hide', eval=FALSE-----------------------------------
# model.ex1$DMS
# # [,1] [,2] [,3] [,4]
# # [1,] "0" "0" "0" "0"
# # [2,] "0" "0.0062 - xfirst4" "0" "matrix(-1, nrow <- (n+1), ncol <- 1)"
# # [3,] "0" "0" "0" "0"
# # [4,] "0" "0" "0" "436.9 - xfirst2"
#
## ----echo=TRUE, results='hide', eval=FALSE-----------------------------------
# model.ex1$VARMS
# # [,1] [,2] [,3] [,4]
# # [1,] "1" "1" "1" "1"
# # [2,] "1" "xplus2" "1" "1"
# # [3,] "1" "1" "1" "1"
# # [4,] "1" "1" "1" "xplus4"
#
## ----echo=TRUE, results='hide', eval=FALSE-----------------------------------
# model.ex1$coefficients
# # [1] 3.038673e-03 -2.996649e-03 -7.977544e-02 -6.809132e-06 3.517929e-06
# # [6] -6.991181e-04 -2.691055e+00 5.728424e-01 6.722162e-04 2.613055e+00
# # [11] -1.701914e-04
## ----echo=TRUE, results='hide', eval=FALSE-----------------------------------
# > model.ex1$fitted.values
# # [1] 0.0007575982 0.0003071999 0.0004176579 0.0005434535 0.0004821474 0.0004517915
# # [7] 0.0004376478 0.0004160878 0.0013674034 0.0012119509 0.0012961460 0.0011833885
# # [13] 0.0009870342 0.0012386077 0.0013057215 0.0011887701 0.0012214500 0.0017378222
# # [19] 0.0017998247 0.0018951991 0.0026293088 0.0031847542 0.0033385298 0.0033184915
# # [25] 0.0013479697 0.0024916551 0.0027357523 0.0026836362
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.