cog_irt | R Documentation |
This function estimates item response theory (IRT) model parameters. Users can optionally estimate person parameters that account for experimental or longitudinal contrast effects.
cog_irt(
data = NULL,
model = NULL,
guessing = NULL,
contrast_codes = NULL,
num_conditions = NULL,
num_contrasts = NULL,
constraints = NULL,
key = NULL,
link = "probit",
verbose = TRUE,
...
)
data |
A matrix of item responses (K by IJ). Rows should contain each subject's dichotomous responses (1 or 0) for the items indexed by each column. |
model |
An IRT model name. The options are "1p" for the one-parameter model, "2p" for the two parameter model, "3p" for the three-parameter model, or "sdt" for the signal detection-weighted model. |
guessing |
Either a single numeric guessing value or a matrix of item guessing parameters (IJ by 1). This argument is only used when model = '3p'. |
contrast_codes |
Either a matrix of contrast codes (JM by MN) or the name in quotes of a R stats contrast function (i.e., "contr.helmert", "contr.poly", "contr.sum", "contr.treatment", or "contr.SAS"). If using the R stats contrast function items in the data matrix must be arranged by condition. |
num_conditions |
The number of conditions (required if using the R stats contrast function or when constraints = TRUE). |
num_contrasts |
The number of contrasts including intercept (required if using the R stats contrast function or when constraints = TRUE). |
constraints |
Either a logical (TRUE or FALSE) indicating that item parameters should be constrained to be equal over the J conditions or a 1 by I vector of items that should be constrained to be equal across conditions. |
key |
An item key vector where 1 indicates target and 2 indicates distractor (IJ). Required when model = 'sdt'. |
link |
The name ("logit" or "probit") of the link function to be used in the model. |
verbose |
Logical (TRUE or FALSE) indicating whether to print progress. |
... |
Additional arguments. |
A list with elements for all parameters estimated (omega1, nu1, and/or lambda1), information values for all parameters estimated (info1_omega, info1_nu, and/or info1_lambda), the model log-likelihood value (log_lik), and the total number of estimated parameters (par) in the model.
I = Number of items per condition; J = Number of conditions or time points; K = Number of examinees; M Number of ability (or trait) dimensions; N Number of contrast effects (including intercept).
Embretson S. E., & Reise S. P. (2000). Item response theory for psychologists. Mahwah, N.J.: L. Erlbaum Associates.
Thomas, M. L., Brown, G. G., Patt, V. M., & Duffy, J. R. (2021). Latent variable modeling and adaptive testing for experimental cognitive psychopathology research. Educational and Psychological Measurement, 81(1), 155-181.
nback_fit_contr <- cog_irt(data = nback$y, model = "sdt",
contrast_codes = "contr.poly", key = nback$key,
num_conditions = length(unique(nback$condition)),
num_contrasts = 2)
plot(nback_fit_contr)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.