obs.estimate.PTE | R Documentation |
Fits base learners using the specified type of model on the training data, and uses those models to calculate delta, delta.s, and R.s on the testing set.
obs.estimate.PTE(df.train, df.test, type, numeric_predictors, categorical_predictors,
use.actual.control.S, gam.smoothers, tree.tuners, want.smooth, want.tune)
df.train |
A dataframe containing training data. |
df.test |
A dataframe containing testing data. |
type |
Options are "linear", "gam", "trees", or "all"; type of base learners to use. |
numeric_predictors |
The column names in the dataframes that represent numeric baseline covariates. |
categorical_predictors |
The column names in the dataframes that represent categorical baseline covariates. |
use.actual.control.S |
TRUE or FALSE, if user prefers to use the actual observed values for the surrogate in the control group instead of predicting values from the base learners. |
gam.smoothers |
A list of smoothing parameters to use for GAM base learners, so they are not retuned with bootstrapping iterations ("m1sp", "m0sp", "m1ssp", "m0ssp", "s0") |
tree.tuners |
A list of tuning parameters to use for tree base learners, so they are not retuned with bootstrapping iterations ("m1sp", "m0sp", "m1ssp", "m0ssp", "s0") |
want.smooth |
TRUE or FALSE, if smoothing parameters for GAM should be saved |
want.tune |
TRUE or FALSE, if tuning parameters for trees should be saved |
A list is returned:
df.test |
df.test argument with new columns appended for the estimates of delta, delta.s, and R.s |
smooth_params |
A list of smoothing parameters used for GAM base learners ("m1sp", "m0sp", "m1ssp", "m0ssp", "s0") |
tuner_params |
A list of tuning parameters used for tree base learners ("m1sp", "m0sp", "m1ssp", "m0ssp", "s0") |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.