colorhcplot | R Documentation |
Build colorful dendrograms based on a "hclust-class" object and a factor describing the sample groups. Leaves belonging to different groups are identified by colors, and the resulting plot enables detection of pure clusters where all leaves belong to the same group.
colorhcplot(
hc,
fac,
hang = 0.1,
main = "Cluster Dendrogram",
colors = NULL,
lab.cex = 1,
ylim = NULL,
lwd = 3,
las = 1,
lab.mar = 0.55
)
hc |
hclust-class object, typically the result of a 'hclust()' function call. |
fac |
factor that defines the grouping. |
hang |
hang value, as in |
main |
string, title of the dendrogram plot. |
colors |
NULL or a character vector of length 1 or having the same length as the number of levels in fac. This argument defines the palette for the plot. |
lab.cex |
numeric value for adjusting the font size of the leaf labels (and legend text). |
ylim |
numeric, defines the minimum and maximum value of the y-axis of the plot. |
lwd |
numeric value that defines the width (in points) of the lines of the dendogram. |
las |
numeric value, graphic parameter for the orientation of the y-axis tick labels. |
lab.mar |
numeric value, fraction of the plot area that is reserved for the labels (at the bottom of the plot). |
In order to generate a colorful dendrogram, the colorhcplot() function requires 2 mandatory arguments: hc and fac. hc is the result of a hclust() call, while fac is a factor defining the groups. The number of leaves of the dendrogram has to be identical to the length of fac.
Calling colorhcplot() returns a colorful dendrogram plot.
Online colorhcplot() function reference at: http://www.biotechworld.it/bioinf/2015/09/30/colorful-hierarchical-clustering-dendrograms-with-r/
Damiano Fantini <damiano.fantini@gmail.com>
hclust
### Example 1, using the USArrests dataset
data(USArrests)
hc <- hclust(dist(USArrests), "ave")
fac <- as.factor(c(rep("group 1", 10),
rep("group 2", 10),
rep("unknown", 30)))
plot(hc)
colorhcplot(hc, fac)
colorhcplot(hc, fac, hang = -1, lab.cex = 0.8)
### Example 2: use the "ward.D2" algorithm and
### the UScitiesD dataset
data(UScitiesD)
hcity.D2 <- hclust(UScitiesD, "ward.D2")
fac.D2 <-as.factor(c(rep("group1", 3),
rep("group2", 7)))
plot(hcity.D2, hang=-1)
colorhcplot(hcity.D2, fac.D2, color = c("chartreuse2", "orange2"))
colorhcplot(hcity.D2, fac.D2, color = "gray30",
lab.cex = 1.2, lab.mar = 0.75)
### Example 3: use gene expression data
data(geneData, package="colorhcplot")
exprs <- geneData$exprs
fac <- geneData$fac
hc <- hclust(dist(t(exprs)))
colorhcplot(hc, fac, main ="default", col = "gray10")
colorhcplot(hc, fac, main="Control vs. Tumor Samples")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.