Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(warning = FALSE,
message = FALSE,
collapse = TRUE,
comment = "#>",
out.width = "\\textwidth",
fig.height = 4,
fig.width = 7,
fig.align = "center",
dpi = 300)
# only build vignettes locally and not for R CMD check
knitr::opts_chunk$set(eval = nzchar(Sys.getenv("BUILD_VIGNETTES")))
## ----fiespa-data--------------------------------------------------------------
# library(sf)
# library(ggplot2)
# library(colorist)
#
# # load data
# data("fiespa_occ")
# fiespa_occ
## ----fiespa-metrics-----------------------------------------------------------
# # pull information from the stack
# m1 <- metrics_pull(fiespa_occ)
# m1
## ----fiespa-palette-----------------------------------------------------------
# # generate a color palette
# p1 <- palette_timecycle(fiespa_occ)
# head(p1)
## ----fiespa-mapmult-----------------------------------------------------------
# # map each of the layers
# map_multiples(m1, p1, ncol = 4, labels = names(fiespa_occ))
## ----fiespa-mapsing-----------------------------------------------------------
# # map one layer
# map_single(m1, p1, layer = 6)
## ----fiespa-distill-----------------------------------------------------------
# # distill distribution information across layers
# m1_distill <- metrics_distill(fiespa_occ)
#
# # visualize distilled information on a single map
# map_single(m1_distill, p1)
## ----fielsp-legend------------------------------------------------------------
# # generate a legend
# legend_timecycle(p1, origin_label = "Jan 1")
## ----fisher-data--------------------------------------------------------------
# # loda data
# data("fisher_ud")
# fisher_ud
## ----fisher-map---------------------------------------------------------------
# # pull information from the stack
# m2 <- metrics_pull(fisher_ud)
#
# # generate a color palette
# p2 <- palette_timeline(fisher_ud)
#
# # map each of the layers
# map_multiples(m2, p2)
## ----fisher-lambda_i----------------------------------------------------------
# # map each of the layers and adjust visual weights
# map_multiples(m2, p2, lambda_i = -5)
## ----fisher-distill-----------------------------------------------------------
# # distill distribution information across layers
# m2_distill <- metrics_distill(fisher_ud)
#
# # visualize distilled information on a single map
# map_single(m2_distill, p2, lambda_i = -5)
## ----fisher-legend------------------------------------------------------------
# # generate a legend
# legend_timeline(p2, time_labels = c("April 7", "April 15"))
## ----elephant-pull------------------------------------------------------------
# # load data
# data("elephant_ud")
#
# # pull information from the stack
# m3 <- metrics_pull(elephant_ud)
#
# # assign a color palette
# p3 <- palette_set(elephant_ud)
#
# # generate maps for each individual
# map_multiples(m3, p3, ncol = 2, lambda_i = -5, labels = names(elephant_ud))
## ----elephant-distill---------------------------------------------------------
# # distill distribution information across individuals
# m3_distill <- metrics_distill(elephant_ud)
#
# # visualize distilled information on a single map
# map_single(m3_distill, p3, lambda_i = -5)
# # generate a legend
# legend_set(p3, group_labels = names(elephant_ud))
## ----elephant-sfdl, eval = FALSE----------------------------------------------
# # download data to a temp directory
# url <- "https://github.com/mstrimas/colorist/raw/master/data-raw/"
# f <- file.path(tempdir(), "etosha-features.gpkg")
# download.file(paste0(url, basename(f)), f)
## ----elephant-sfpath, echo = FALSE--------------------------------------------
# f <- "../data-raw/etosha-features.gpkg"
## ----elepaphant-sf------------------------------------------------------------
# pans <- read_sf(f, layer = "pans") %>%
# st_transform(crs = st_crs(elephant_ud))
#
# waterholes <- read_sf(f, layer = "waterholes") %>%
# st_transform(crs = st_crs(elephant_ud))
#
# park <- read_sf(f, layer = "etosha") %>%
# st_transform(crs = st_crs(elephant_ud))
#
# roads <- read_sf(f, layer = "roads") %>%
# st_transform(crs = st_crs(elephant_ud))
## ----elephant-pretty, fig.width = 6, fig.height = 3.5-------------------------
# # visualize both distributions on a single map and add environmental data
# elephant_map <- map_single(m3_distill, p3, lambda_i = -5) +
# geom_sf(data = pans, alpha = 0.2, size = 0.15, color = "gray40") +
# geom_sf(data = waterholes, size = 0.25) +
# geom_sf(data = park, size = 3, fill = NA, color = alpha("gray60", 0.2)) +
# geom_sf(data = park, size = 0.2, fill = NA, color = "gray20", linetype = 6) +
# ggtitle("Two Elephants in Etosha National Park")
#
# # show the map
# elephant_map
## ----elephant-save, eval = FALSE----------------------------------------------
# # save the map
# ggsave(plot = elephant_map,
# filename = "afrele_map_singles.png",
# width = 6,
# height = 3.5,
# dpi = 600)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.