Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(warning = FALSE,
message = FALSE,
collapse = TRUE,
comment = "#>",
out.width = "\\textwidth",
fig.height = 4,
fig.width = 7,
fig.align = "center",
dpi = 300)
# only build vignettes locally and not for R CMD check
knitr::opts_chunk$set(eval = nzchar(Sys.getenv("BUILD_VIGNETTES")))
## ----libraries----------------------------------------------------------------
# library(colorist)
# library(ggplot2)
# library(RColorBrewer)
## ----hues-fiespa-default------------------------------------------------------
# # pull metrics, generate default palette, map layers
# m1 <- metrics_pull(fiespa_occ)
# p1 <- palette_timecycle(12)
# map_multiples(m1, p1, labels = names(fiespa_occ), ncol = 4)
## ----echo = FALSE-------------------------------------------------------------
# # pull metrics, generate default palette, map layers
# m1 <- metrics_pull(fiespa_occ)
# p1 <- palette_timecycle(12)
## ----hues-fiespa-custom-------------------------------------------------------
# # change palette start position on color wheel
# p1_custom <- palette_timecycle(12, start_hue = 60)
#
# # map layers
# map_multiples(m1, p1_custom, labels = names(fiespa_occ), ncol = 4)
## ----hues-elephant-default----------------------------------------------------
# # pull metrics, generate default palette, map layers
# m2 <- metrics_pull(elephant_ud)
# p2 <- palette_set(2)
# map_multiples(m2, p2, labels = c("'Purple People-eater'", "'Jolly Green Giant'"), ncol = 2)
## ----hues-elephant-custom-----------------------------------------------------
# # use custom_hues argument to make specific hue choices
# p2_custom <- palette_set(2, custom_hues = c(280, 120))
#
# # map layers
# map_multiples(m2, p2_custom, labels = c("'Purple People-eater'", "'Jolly Green Giant'"), ncol = 2)
## ----opacity-intensity-plot, echo = FALSE, fig.cap = "**Cell opacity as a function of intensity values and `lambda_i`.**"----
# # describe modulus function
# modulus <- function(y, lambda) {
# if (lambda != 0) {
# y_t <- sign(y) * ((abs(y) + 1) ^ lambda - 1) / lambda
# } else {
# y_t = sign(y) * log(abs(y) + 1)
# }
# return(y_t)
# }
#
# # create data for plotting
# d <- data.frame(y = seq(0, 1, .01), lambda = rep(seq(-12, 12, 3), each = 101))
# for (i in 1:nrow(d)) {
# d$y_t[i] <- modulus(d$y[i], d$lambda[i] + 1) / modulus(1, d$lambda[i] + 1)
# }
#
# # plot data describing effects of adjustments to lambda
# ggplot(d, aes(y, y_t, group = lambda, color = factor(lambda))) +
# geom_path() +
# scale_color_brewer(type = "div", palette = "BrBG", direction = 1,
# name = "lambda_i") +
# xlab("intensity") +
# ylab("opacity (apparent intensity)") +
# theme(panel.background = element_blank(),
# panel.border = element_rect(color = "black", fill = NA),
# panel.grid = element_blank(),
# aspect.ratio = 1,
# legend.key = element_blank())
## ----opacity-elephant-default-------------------------------------------------
# # map one layer
# map_single(m2, p2_custom, layer = 2)
## ----opacity-elephant-custom--------------------------------------------------
# # map one layer with adjustment to lambda_i
# map_single(m2, p2_custom, layer = 2, lambda_i = -12)
## ----opacity-fisher-default---------------------------------------------------
# # pull metrics, generate default palette, map layers
# m3 <- metrics_pull(fisher_ud)
# p3 <- palette_timeline(fisher_ud)
# map_multiples(m3, p3, labels = names(fisher_ud))
## ----opacity-fisher-custom----------------------------------------------------
# # map layers with adjustment to lambda_i
# map_multiples(m3, p3, labels = names(fisher_ud), lambda_i = 12)
## ----chroma-specificity-plot, echo = FALSE, fig.cap = "**Cell chroma as a function of specificity values and `lambda_s`.**"----
# # get colors from palette and edit
# cols <- brewer.pal(9, "RdGy")
# cols[5] <- "#F5F5F5"
# names(cols) <- seq(-12, 12, 3)
#
# # plot data describing effects of adjustments to lambda_s
# ggplot(d, aes(100 * y, 100 * y_t, group = lambda, color = factor(lambda))) +
# geom_path() +
# scale_color_manual(values = cols, name = "lambda_s") +
# xlab("specificity") +
# ylab("chroma (apparent specificity)") +
# theme(panel.background = element_blank(),
# panel.border = element_rect(color = "black", fill = NA),
# panel.grid = element_blank(),
# aspect.ratio = 1,
# legend.key = element_blank())
## ----chroma-fisher-default----------------------------------------------------
# # distill metrics, visualize metrics in a single map, create legend
# m3_distill <- metrics_distill(fisher_ud)
# map_single(m3_distill, p3, lambda_i = -5)
# legend_timeline(p3, time_labels = c("April 7", "April 15"))
## ----chroma-fisher-custom-----------------------------------------------------
# # visualize metrics in a single map with adjustment to lambda_s
# map_single(m3_distill, p3, lambda_i = -5, lambda_s = 12)
## ----chroma-fiespa-default----------------------------------------------------
# # distill metrics, visualize metrics in a single map, create legend
# m1_distill <- metrics_distill(fiespa_occ)
# map_single(m1_distill, p1)
# legend_timecycle(p1, origin_label = "Jan 1")
## ----chroma-fiespa-custom-----------------------------------------------------
# # visualize metrics in a single map with adjustment to lambda_s
# map_single(m1_distill, p1, lambda_s = -12)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.