Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.width=5, fig.height=5 ,fig.align="center"
)
fpath <- ""
## ----eval=F-------------------------------------------------------------------
# library(mlr)
# library(MASS)
# library(condvis2)
# Boston1 <- Boston[,9:14]
#
# rtask <- makeRegrTask(id = "bh", data = Boston1, target = "medv")
# rmod <- train(makeLearner("regr.lm"), rtask)
# rmod1 <- train(makeLearner("regr.fnn"), rtask)
## ----eval=F-------------------------------------------------------------------
# condvis(Boston1, model=list(rmod,rmod1), response="medv", sectionvars="lstat")
## ----eval=F-------------------------------------------------------------------
# rmod <- train(makeLearner("regr.lm", predict.type="se"), rtask)
# condvis(Boston1, model=rmod, response="medv", sectionvars="lstat", predictArgs=list(list(pinterval="confidence")))
## ----eval=F-------------------------------------------------------------------
# cltask = makeClassifTask(data = iris, target = "Species")
# cllrn = makeLearner("classif.lda",predict.type = "prob") # need predict.type ="probs" to get probs
# clmod = train(cllrn, cltask)
## ----eval=F-------------------------------------------------------------------
# condvis(iris, model=clmod, response="Species", sectionvars=c("Petal.Length", "Petal.Width"), pointColor="Species")
## ----eval=F-------------------------------------------------------------------
#
# ctask = makeClusterTask(data = iris[,-5])
# clrn = makeLearner("cluster.kmeans")
# cmod = train(clrn, ctask)
## ----eval=F-------------------------------------------------------------------
# library(dplyr)
# iris1 <- iris
#
# iris1$pclass <- cmod %>%
# predict(newdata=iris[,-5]) %>%
# getPredictionResponse() %>%
# as.factor()
#
## ----eval=F-------------------------------------------------------------------
# condvis(data = iris1, model = cmod,
# response="pclass",
# sectionvars=c("Petal.Length", "Petal.Width"),
# conditionvars=c("Sepal.Length", "Sepal.Width"),pointColor="Species"
# )
#
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.