con_view | R Documentation |
If there is replication for the treatment combination cells in a two-way table, the replications are averaged together (or counted) before constructing the heatmap.
By default, rows and columns are clustered using the 'incidence' matrix of 0s and 1s.
The function checks to see if the cells in the heatmap form a connected set. If not, the data is divided into connected subsets and the subset group number is shown within each cell.
By default, missing values in the response are deleted.
Factor levels are shown along the left and bottom sides.
The number of cells in each column/row is shown along the top/right sides.
If the 2 factors are disconnected, the group membership ID is shown in each cell.
con_view(
data,
formula,
fun.aggregate = mean,
xlab = "",
ylab = "",
cex.num = 0.75,
cex.x = 0.7,
cex.y = 0.7,
col.regions = RedGrayBlue,
cluster = "incidence",
dropNA = TRUE,
...
)
data |
A dataframe |
formula |
A formula with two (or more) factor names in the dataframe
like |
fun.aggregate |
The function to use for aggregating data in cells. Default is mean. |
xlab |
Label for x axis |
ylab |
Label for y axis |
cex.num |
Disjoint group number. |
cex.x |
Scale factor for x axis tick labels. Default 0.7. |
cex.y |
Scale factor for y axis tick labels Default 0.7. |
col.regions |
Function for color regions. Default RedGrayBlue. |
cluster |
If "incidence", cluster rows and columns by the incidence matrix. If FALSE, no clustering is performed. |
dropNA |
If TRUE, observed data that are |
... |
Other parameters passed to the levelplot() function. |
A lattice graphics object
Kevin Wright
require(lattice)
bar = transform(lattice::barley, env=factor(paste(site,year)))
set.seed(123)
bar <- bar[sample(1:nrow(bar), 70, replace=TRUE),]
con_view(bar, yield ~ variety * env, cex.x=1, cex.y=.3, cluster=FALSE)
# Create a heatmap of cell counts
w2b = colorRampPalette(c('wheat','black'))
con_view(bar, yield ~ variety * env, fun.aggregate=length,
cex.x=1, cex.y=.3, col.regions=w2b, cluster=FALSE)
# Example from paper by Fernando et al. (1983).
set.seed(42)
data_fernando = transform(data_fernando,
y=stats::rnorm(9, mean=100))
con_view(data_fernando, y ~ gen*herd, cluster=FALSE,
main = "Fernando unsorted")
con_view(data_fernando, y ~ gen*herd, cluster=TRUE,
main = "Fernando unsorted")
# Example from Searle (1971), Linear Models, p. 325
dat2 = transform(data_searle,
y=stats::rnorm(nrow(data_searle)) + 100)
con_view(dat2, y ~ f1*f2, cluster=FALSE, main="data_searle unsorted")
con_view(dat2, y ~ f1*f2, main="data_searle clustered")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.