bellmle: MLE of the Bell distribtion

BellR Documentation

MLE of the Bell distribtion

Description

Evaluates the maximum likelihood estimate of the Bell distribtion. The PMF of the Bell distribution is as follows:

f(X=x\mid\theta)=\frac{\theta^{x}e^{e^{\theta}+1}B_{x}}{x!};\qquad x=0,1,2,\,\dots,

where \theta>0 denotes the Bell parameter and B_{x} is the Bell number and it is given by

B_{n}=\frac{1}{e}\sum_{k=0}^{\infty}\frac{k^{n}}{k!}.

The Bell number B_{n} in the above equation is the nth moment of the Poisson distribution with parameter equal to 1.

Usage

bell_mle (x)
mle.bell (x, theta)

Arguments

x

A vector of (non-negative integer) discrete values.

theta

A vector of (non-negative integer) values.

Details

The function allows to estimate the unknown parameter of the Bell distribution with loglik value using a Newton-Raphson algorithm.

Value

bell_mle gives the maximum liklihood estimate of parameter theta. loglik gives value of the maximised log-likelihood. The mle.bell gives the maximum liklihood estimate with standard error and AIC,

Author(s)

Muhammad Imran and M.H. Tahir.

R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com and M.H. Tahir <mht@iub.edu.pk>.

References

Castellares, F., Ferrari, S. L., & Lemonte, A. J. (2018). On the Bell distribution and its associated regression model for count data. Applied Mathematical Modelling, 56, 172-185.

See Also

mle_borel, mle_poisson

Examples

x <- data_sbirth
bell_mle (x)
mle.bell (x, 1.2)

countDM documentation built on May 31, 2023, 6:13 p.m.