a_j | Inverse rounding function |
bam_star | Fit Bayesian Additive STAR Model with MCMC |
bart_star | MCMC Algorithm for BART-STAR |
bart_star_ispline | MCMC sampler for BART-STAR with a monotone spline model for... |
blm_star | STAR Bayesian Linear Regression |
blm_star_bnpgibbs | Gibbs sampler for STAR linear regression with BNP... |
blm_star_exact | Monte Carlo sampler for STAR linear regression with a g-prior |
BrentMethod | Brent's method for optimization |
computeTimeRemaining | Estimate the remaining time in the MCMC based on previous... |
confint.lmstar | Compute asymptotic confidence intervals for STAR linear... |
credBands | Compute Simultaneous Credible Bands |
ergMean | Compute the ergodic (running) mean. |
expectation2_gRcpp | Compute E(Y^2) for a STAR process |
expectation_gRcpp | Estimate the mean for a STAR process |
expectation_identity | Estimate the mean for a STAR process |
expectation_log | Estimate the mean for a STAR process |
expectation_sqrt | Estimate the mean for a STAR process |
g_bc | Box-Cox transformation |
gbm_star | Fitting STAR Gradient Boosting Machines via EM algorithm |
g_bnp | Bayesian bootstrap-based transformation |
g_cdf | Cumulative distribution function (CDF)-based transformation |
genEM_star | Generalized EM estimation for STAR |
genMCMC_star | Generalized MCMC Algorithm for STAR |
genMCMC_star_ispline | MCMC sampler for STAR with a monotone spline model for the... |
getEffSize | Summarize of effective sample size |
g_inv_approx | Approximate inverse transformation |
g_inv_bc | Inverse Box-Cox transformation |
init_bam_orthog | Initialize the parameters for an additive model |
init_bam_thin | Initialize the parameters for an additive model |
init_lm_gprior | Initialize linear regression parameters assuming a g-prior |
init_lm_hs | Initialize linear regression parameters assuming a horseshoe... |
init_lm_ridge | Initialize linear regression parameters assuming a ridge... |
init_params_mean | Initialize the parameters for a simple mean-only model |
interval_gRcpp | Estimate confidence intervals/bands for a STAR process |
invlogit | Compute the inverse log-odds |
lm_star | Fitting frequentist STAR linear model via EM algorithm |
logit | Compute the log-odds |
logLikePointRcpp | Compute the pointwise log-likelihood for STAR |
logLikeRcpp | Compute the log-likelihood for STAR |
plot_coef | Plot the estimated regression coefficients and credible... |
plot_fitted | Plot the fitted values and the data |
plot_pmf | Plot the empirical and model-based probability mass functions |
pmaxRcpp | pmax() in Rcpp |
pminRcpp | pmin() in Rcpp |
predict.lmstar | Predict method for response in STAR linear model |
pvals | Compute coefficient p-values for STAR linear regression using... |
randomForest_star | Fit Random Forest STAR with EM algorithm |
roaches | Data on the efficacy of a pest management system at reducing... |
round_floor | Rounding function |
rtruncnormRcpp | Sample from a truncated normal distribution |
sample_bam_orthog | Sample the parameters for an additive model |
sample_bam_thin | Sample the parameters for an additive model |
sampleFastGaussian | Sample a Gaussian vector using the fast sampler of... |
sample_lm_gprior | Sample the linear regression parameters assuming a g-prior |
sample_lm_hs | Sample linear regression parameters assuming horseshoe prior |
sample_lm_ridge | Sample linear regression parameters assuming a ridge prior |
sample_params_mean | Sample the parameters for a simple mean-only model |
simBaS | Compute Simultaneous Band Scores (SimBaS) |
simulate_nb_friedman | Simulate count data from Friedman's nonlinear regression |
simulate_nb_lm | Simulate count data from a linear regression |
splineBasis | Initialize and reparametrize a spline basis matrix |
spline_star | Estimation for Bayesian STAR spline regression |
spline_star_exact | Monte Carlo predictive sampler for spline regression |
truncnorm_mom | Compute the first and second moment of a truncated normal |
uni.slice | Univariate Slice Sampler from Neal (2008) |
update_struct | Update parameters for warpDLM model with trend DLM |
warpDLM | Posterior Inference for warpDLM model with latent structural... |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.