init_lm_hs: Initialize linear regression parameters assuming a horseshoe...

View source: R/internal_functions.R

init_lm_hsR Documentation

Initialize linear regression parameters assuming a horseshoe prior

Description

Initialize the parameters for a linear regression model assuming a horseshoe prior for the (non-intercept) coefficients. The number of predictors p may exceed the number of observations n.

Usage

init_lm_hs(y, X, X_test = NULL)

Arguments

y

n x 1 vector of data

X

n x p matrix of predictors

X_test

n0 x p matrix of predictors at test points (default is NULL)

Value

a named list params containing at least

  1. mu: vector of conditional means (fitted values)

  2. sigma: the conditional standard deviation

  3. coefficients: a named list of parameters that determine mu

Additionally, if X_test is not NULL, then the list includes an element mu_test, the vector of conditional means at the test points

Note

The parameters in coefficients are:

  • beta: the p x 1 vector of regression coefficients

  • sigma_beta: the p x 1 vector of regression coefficient standard deviations (local scale parameters)

  • xi_sigma_beta: the p x 1 vector of parameter-expansion variables for sigma_beta

  • lambda_beta: the global scale parameter

  • xi_lambda_beta: the parameter-expansion variable for lambda_beta components of beta


countSTAR documentation built on July 9, 2023, 5:12 p.m.