Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
eval = FALSE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
# library(countdata)
## -----------------------------------------------------------------------------
# d <- read.delim("https://tvpham.github.io/data/example-3groups.txt")
#
# head(d)
# #> a1 a2 a3 b1 b2 b3 c1 c2
# #> 1 624 496 509 414 394 375 325 288
# #> 2 615 854 930 341 523 360 359 329
# #> 3 553 560 745 819 490 481 480 500
# #> 4 525 412 401 354 321 310 258 228
# #> 5 484 284 315 268 282 307 270 298
# #> 6 482 348 400 242 365 367 81 118
#
# # compare the first 3 samples against the next three samples
# out <- countdata::bb.test(d[, 1:6],
# colSums(d[, 1:6]),
# c(rep("a", 3), rep("b", 3)))
# #> Using 11 thread(s) ...
# #> No. of data rows = 1786, no. of groups = 2, no. of samples = 6...
# #> 5%
# #> 11%
# #> 18%
# #> 23%
# #> 30%
# #> 35%
# #> 41%
# #> 49%
# #> 55%
# #> 64%
# #> 81%
# #> 87%
# #> 93%
# #> 98%
# #> Done.
#
# d.norm <- countdata::normalize(d[, 1:8])
#
# write.table(cbind(d, d.norm,
# fc = countdata::fold.change(d.norm[, 1:3], d.norm[, 4:6]),
# pval = out$p.value,
# pval.BH = p.adjust(out$p.value, method = "BH")),
# file = "output.txt", row.names = FALSE, sep = "\t")
## -----------------------------------------------------------------------------
# d <- read.delim("https://tvpham.github.io/data/example-3groups.txt")
#
# head(d)
# #> a1 a2 a3 b1 b2 b3 c1 c2
# #> 1 624 496 509 414 394 375 325 288
# #> 2 615 854 930 341 523 360 359 329
# #> 3 553 560 745 819 490 481 480 500
# #> 4 525 412 401 354 321 310 258 228
# #> 5 484 284 315 268 282 307 270 298
# #> 6 482 348 400 242 365 367 81 118
#
# # compare the first 3 samples, the next three samples, and the last two samples.
# out <- countdata::bb.test(d[, 1:8],
# colSums(d[, 1:8]),
# c(rep("a", 3), rep("b", 3), rep("c", 2)))
# #> Using 11 thread(s) ...
# #> No. of data rows = 1786, no. of groups = 3, no. of samples = 8...
# #> 0%
# #> 5%
# #> 10%
# #> 16%
# #> 23%
# #> 33%
# #> 40%
# #> 45%
# #> 51%
# #> 58%
# #> 63%
# #> 70%
# #> 76%
# #> 81%
# #> 87%
# #> 93%
# #> 98%
# #> Done.
#
# d.norm <- countdata::normalize(d[, 1:8])
#
# write.table(cbind(d, d.norm,
# pval = out$p.value,
# pval.BH = p.adjust(out$p.value, method = "BH")),
# file = "output.txt", row.names = FALSE, sep = "\t")
## -----------------------------------------------------------------------------
# d <- read.delim("https://tvpham.github.io/data/example-paired.txt")
#
# head(d)
# #> pre.1 pre.2 pre.3 post.1 post.2 post.3
# #> 1 575 179 335 505 172 204
# #> 2 294 245 256 396 390 265
# #> 3 293 282 320 372 240 204
# #> 4 303 282 250 307 243 227
# #> 5 396 271 171 327 216 103
# #> 6 238 261 271 245 234 215
#
# out <- countdata::ibb.test(d[, 1:6],
# colSums(d[, 1:6]),
# c(rep("pre_treatment", 3), rep("post_treatment", 3)))
# #> Using 11 thread(s) ...
# #> No. of data rows = 2919, no. of pair(s) = 3...
# #> 0%
# #> 5%
# #> 11%
# #> 16%
# #> 21%
# #> 26%
# #> 31%
# #> 36%
# #> 41%
# #> 46%
# #> 51%
# #> 57%
# #> 63%
# #> 68%
# #> 73%
# #> 78%
# #> 83%
# #> 88%
# #> 94%
# #> 99%
# #> Done.
#
# d.norm <- countdata::normalize(d[, 1:6])
#
# write.table(cbind(d, d.norm,
# fc = out$fc,
# pval = out$p.value,
# pval.BH = p.adjust(out$p.value, method = "BH")),
# file = "output.txt", row.names = FALSE, sep = "\t")
#
## -----------------------------------------------------------------------------
# x <- c(1, 5, 1, 10, 9, 11, 2, 8)
#
# tx <- c(19609, 19053, 19235, 19374, 18868, 19018, 18844, 19271)
#
# group <- c(rep("cancer", 3), rep("normal", 5))
#
# countdata::bb.test(x, tx, group)
# #> Using a single CPU core ...
# #> No. of data rows = 1, no. of groups = 2, no. of samples = 8...
# #> 100%
# #> Done.
# #> $p.value
# #> [1] 0.01568598
## -----------------------------------------------------------------------------
# d <- read.delim("https://tvpham.github.io/data/example-3groups.txt")
#
# # compare 3 groups, using all available CPU cores
# out <- countdata::bb.test(d[, 1:8],
# colSums(d[, 1:8]),
# c(rep("a", 3), rep("b", 3), rep("c", 2)))
# #> Using 11 thread(s) ...
# #> No. of data rows = 1786, no. of groups = 3, no. of samples = 8...
# #> 0%
# #> 5%
# #> 11%
# #> 16%
# #> 21%
# #> 28%
# #> 34%
# #> 40%
# #> 46%
# #> 52%
# #> 58%
# #> 77%
# #> 83%
# #> 88%
# #> 93%
# #> 98%
# #> Done.
## -----------------------------------------------------------------------------
# pval.BH <- p.adjust(out$p.value, method = "BH")
## -----------------------------------------------------------------------------
# d.norm <- countdata::normalize(d[, 1:8])
#
# # check -- all values should be equal
# colSums(d.norm)
# #> a1 a2 a3 b1 b2 b3 c1 c2
# #> 19159 19159 19159 19159 19159 19159 19159 19159
## -----------------------------------------------------------------------------
# head(cbind(d.norm, out$p.value))
# #> a1 a2 a3 b1 b2 b3 c1 c2
# #> 1 609.6800 498.7595 506.9889 409.4057 400.0766 377.7803 330.43276 286.3262
# #> 2 600.8866 858.7512 926.3254 337.2158 531.0662 362.6691 365.00111 327.0879
# #> 3 540.3094 563.1155 742.0564 809.9113 497.5572 484.5661 488.02377 497.0941
# #> 4 512.9520 414.2921 399.4156 350.0715 325.9508 312.2983 262.31278 226.6749
# #> 5 472.8929 285.5800 313.7554 265.0259 286.3493 309.2761 274.51337 296.2681
# #> 6 470.9388 349.9361 398.4195 239.3144 370.6294 369.7209 82.35401 117.3142
# #> out$p.value
# #> 1 0.0001164498
# #> 2 0.0016150240
# #> 3 0.4501729545
# #> 4 0.0003105657
# #> 5 0.2521494212
# #> 6 0.0001057092
## -----------------------------------------------------------------------------
# fc12 <- countdata::fold.change(d.norm[, 1:3], d.norm[, 4:6])
# fc13 <- countdata::fold.change(d.norm[, 1:3], d.norm[, 7:8])
# fc23 <- countdata::fold.change(d.norm[, 4:6], d.norm[, 7:8], BIG = 100)
#
# head(cbind(d.norm, out$p.value, fc12, fc13, fc23))
# #> a1 a2 a3 b1 b2 b3 c1 c2
# #> 1 609.6800 498.7595 506.9889 409.4057 400.0766 377.7803 330.43276 286.3262
# #> 2 600.8866 858.7512 926.3254 337.2158 531.0662 362.6691 365.00111 327.0879
# #> 3 540.3094 563.1155 742.0564 809.9113 497.5572 484.5661 488.02377 497.0941
# #> 4 512.9520 414.2921 399.4156 350.0715 325.9508 312.2983 262.31278 226.6749
# #> 5 472.8929 285.5800 313.7554 265.0259 286.3493 309.2761 274.51337 296.2681
# #> 6 470.9388 349.9361 398.4195 239.3144 370.6294 369.7209 82.35401 117.3142
# #> out$p.value fc12 fc13 fc23
# #> 1 0.0001164498 -1.360633 -1.746148 -1.283335
# #> 2 0.0016150240 -1.938309 -2.298320 -1.185735
# #> 3 0.4501729545 -1.029825 -1.248907 -1.212738
# #> 4 0.0003105657 -1.342337 -1.808716 -1.347438
# #> 5 0.2521494212 -1.245834 -1.252351 -1.005232
# #> 6 0.0001057092 -1.244604 -4.071068 -3.270976
## -----------------------------------------------------------------------------
# x <- c(33, 32, 86, 51, 52, 149)
#
# tx <- c(7742608, 15581382, 20933491, 7126839, 13842297, 14760103)
#
# group <- c(rep("cancer", 3), rep("normal", 3))
#
# countdata::ibb.test(x, tx, group)
# #> Using a single CPU core ...
# #> No. of data rows = 1, no. of pair(s) = 3...
# #> 100%
# #> Done.
# #> $p.value
# #> [1] 0.004103636
# #>
# #> $fc
# #> [1] 2.137632
## -----------------------------------------------------------------------------
# d <- read.delim("https://tvpham.github.io/data/example-paired.txt")
#
# # perform a paired test for all rows
# out <- countdata::ibb.test(d[, 1:6],
# colSums(d[, 1:6]),
# c(rep("pre_treatment", 3), rep("post_treatment", 3)))
# #> Using 11 thread(s) ...
# #> No. of data rows = 2919, no. of pair(s) = 3...
# #> 0%
# #> 5%
# #> 10%
# #> 16%
# #> 21%
# #> 26%
# #> 31%
# #> 37%
# #> 42%
# #> 47%
# #> 52%
# #> 57%
# #> 62%
# #> 67%
# #> 73%
# #> 78%
# #> 83%
# #> 88%
# #> 93%
# #> 98%
# #> Done.
## -----------------------------------------------------------------------------
# d.norm <- countdata::normalize(d[, 1:6])
#
# head(cbind(d.norm, out$p.value, out$fc))
# #> pre.1 pre.2 pre.3 post.1 post.2 post.3 out$p.value out$fc
# #> 1 594.2861 176.8823 347.1786 490.0689 164.2960 208.5462 0.064856368 -1.297663
# #> 2 303.8611 242.1015 265.3067 384.2916 372.5316 270.9056 0.072525346 1.259570
# #> 3 302.8275 278.6637 331.6333 361.0012 229.2502 208.5462 0.334902070 -1.168634
# #> 4 313.1629 278.6637 259.0885 297.9231 232.1159 232.0588 0.045979358 -1.117328
# #> 5 409.2823 267.7939 177.2166 317.3317 206.3252 105.2954 0.006665643 -1.356184
# #> 6 245.9828 257.9122 280.8520 237.7562 223.5190 219.7913 0.048216659 -1.151104
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.